
On the Practicality of Low-Density Parity-Check Codes

Alex C. Snoeren
MIT Lab for Computer Science

Cambridge, MA 02138

snoeren@lcs.mit.edu

June 27, 2001

Abstract

Recent advances in coding theory have produced two classes
of codes, turbo codes and low-density parity-check (LDPC)
codes, which approach the Shannon limit of channel capac-
ity while admitting efficient implementations of message en-
coding and decoding in software. Theoretic results about
the latter have been shown to apply to the former, hence
we examine the evolution of LDPC codes from their origin
in Gallager’s 1963 thesis to their current incarnation as tor-
nado codes developed by Luby, Mitzenmacher, Shokrollahi,
and Spielman. After considering several analytic approaches
to quantifying their performance, we discuss the practicality
of LDPC codes, particularly those designed for the erasure
channel, when applied to a number of current problems in
networking.

1 Introduction

The late Claude Shannon founded an entire field of study in
1948 with his discovery of the Noisy Channel Coding Theo-
rem [15]. Shannon proved that every communication chan-
nel has a fixed capacity, which can be expressed in terms
of bits per second, and that it is not possible to send infor-
mation across a channel at a rate exceeding its capacity, or
Shannon limit, as it has come to be known. Since that time,
an entire field of study has grown out of attempts to design
coding schemes that reach or approach the Shannon limit of
various channels, including those that simply drop message
bits, termed erasure channels [5], and those that add various
types of noise to the signal.

One class of codes considers encoding k-dimensional mes-
sage blocks of length n over a finite field Fq , resulting in
a k-dimensional linear subspace of F n

q . Clearly, in order
to successfully transmit a message over a lossy channel, k
is selected to be strictly less than n, producing an over-
complete basis for the k-dimensional message space. The
process of encoding maps a k-dimensional message into an
n-dimensional codeword, and can be described succinctly by
a k × n generator matrix. The ratio of information to data
sent, k/n, serves as a efficiency metric, and is known as the
rate of the code.

By carefully selecting the basis vectors, a message can be
reconstructed with any appropriately-sized subset of the n
vectors. If each vector is linearly independent, any k vectors
will do. Since the channel may also introduce noise, codes
attempt to maximize the distance between constituent code-
words to reduce the likelihood of confusion. Note codewords
are easily identified through the use of a parity-check matrix,
which maps all valid codewords to zero (by verifying the
linear constraints between basis vectors). Codes with max-
imum Hamming distance between constituent codewords
are termed maximum-distance separable (MDS), and can be
shown to achieve full capacity.

A common family of MDS codes is given by Reed-Solomon
(RS) codes [17], which underlie the coding schemes of
a large number of technologies, including audio Compact
Discs. By utilizing cyclic groups as their finite field, algo-
rithms exist for RS codes that enable encoding and decod-
ing in time O(n log2 n log logn) asymptotically, although
quadratic, matrix-based algorithms are often faster for small
values of n [7]. Due to the inherent performance limitations
of RS codes, researchers have continued to search for other
classes of block codes that approach the Shannon bound.

One particularly attractive class of block codes that has re-
ceived a good deal of recent attention is low-density parity-
check (LDPC) codes, originally proposed by Gallager in his
1963 thesis [6]. Unlike Reed-Solomon codes, which rely on
dense parity-check matrices, Gallager’s matrices are sparse,
enabling more efficient decoding. As originally proposed,
the column vectors of the parity-check matrices all had equal
weight, resulting in so-called regular codes. Luby, Mitzen-
macher, Shokrollahi, and Spielman further improved the ef-
ficiency of LDPC through the use of irregular codes [8]. Re-
cent work shown encoding can also be done in near-linear
time [7, 10], and that these codes are amenable to rigorous
theoretical analysis [6, 7, 8, 14], admitting tight efficiency
bounds provably close to the Shannon limit for a large class
of communication channels [14].

The study of low-density parity-check codes has even greater
value due to their relationship to a larger class of codes [9],
including the turbo codes introduced by Berrou, Glavieux,

1

and Thitimajshima [1]. As their name implies, turbo codes
represent the other currently-known class of codes to pro-
vide efficient (essentially linear) encoding and decoding with
capacities approaching the Shannon limit. Similarly, turbo
code decoding has been framed as a belief propagation algo-
rithm [11], a class of decoding algorithms first developed for
LDPC codes [10]. Hence, theoretical results derived from
the study of LDPC codes are likely to impact both classes of
efficient, high-capacity coding schemes, although the con-
verse is not necessarily true.1

Due to their remarkable performance, low-density parity-
check codes have been proposed for use repeatedly in the
context of computer systems [3, 4], where efficient encoding
and decoding are of paramount importance. Furthermore,
in the specific case of packet-based communication (such as
the packet-switched Internet), codes designed for the erasure
channel are particularly well suited. We consider the util-
ity of LDPC for a number of networking applications in this
paper.

The remainder of the paper is organized as follows. We be-
gin in section 2 with a brief tutorial on low-density parity-
check codes as proposed by Gallager [6], outlining his pro-
posed decoding algorithms and their performance over the
binary-symmetric channel. We present improved decoding
algorithms in section 3 that use an extended message alpha-
bet. Section 4 discusses results that show LDPC codes based
on random graphs perform almost as well as Gallager’s ex-
plicit constructions. Section 5 discusses the further extension
to random graphs of irregular degree, as proposed by Luby,
Mitzenmacher, Shokrollahi, and Spielman [8].

We then consider more practical aspects, beginning in sec-
tion 6 with the development of extremely fast random irreg-
ular LDPC codes for the erasure channel, namely the tor-
nado codes of Luby, Mitzenmacher, Shokrollahi, and Spiel-
man [7]. Finally, we consider the applicability of LDPC
codes on the erasure channel to a number of problems in
computer systems in section 7 before concluding in sec-
tion 8.

2 Gallager codes

In this section, we will introduce the class of regular low-
density parity-check codes (also known as Gallager codes),
and show their relation to bipartite graphs. We subsequently
describe the class of output-symmetric channels these codes
were designed to operate over. Following the notation of
Richardson and Urbanke [14], we will then present Gal-
lager’s hard-decision message-passing decoding algorithms,
and analyze their performance in a simplistic channel model.

1Turbo codes are typically constructed by concatenating specific (convo-
lutional) constituent codes, as opposed to random members of an ensemble,
as analyzed in the LDPC case.

vi

vi

vi

vi

vi

vi

vi

vi

vi

vi

ci

ci

ci

ci

ci

Figure 1: A bipartite graph representation of a (3, 6)-regular
(Gallager) code with design rate 1/2. In conventional linear
code notation, this is a [10, 5]2-code, since it has length 10
and dimension 5. (Adapted from [14, fig. 1].)

2.1 Construction

Any linear code can be expressed as the set of solutions to
a parity-check equation, C := {c : HcT = 0} [17]. The
matrix H is known as the parity-check matrix for the code
C, as it represents a series of parity check equations. If we
consider codes over GF(2)–binary bits, or binits, as Gallager
called them, then each parity check equation is just a series of
binary XOR operations. Gallager defined a (dv, dc)-regular
LDPC code as a linear code over GF(2) where each message
node is involved in dv parity check equations, and each parity
check equation consists of dc message nodes. Each column
of the matrixH has dv ones, and each row has dc ones, hence
the name low-density parity-check matrices.

It is often convenient to view such codes as a bipartite graph.
The term regular code follows directly from the graphical in-
terpretation of the code: each message node has degree d v,
and check nodes dc. Figure 1 shows the graphical representa-
tion of a (3, 6) Gallager code with length 10. The codewords
correspond to those sequences of 10 bits the XOR of the d c

message nodes adjacent to each check node is zero.

Each linearly independent parity check equation reduces the
dimension of the codeword by one. Hence the design rate of
a Gallager code of length n with m = ndv/dc check bits is
given by (from [14])

R =
n−m

n
= 1− dv

dc
.

For any particular code, the constraint set might not be com-
pletely independent, hence the actual rate of a particular code
may be higher.

2

2.2 Channel assumptions

A noisy channel may cause codewords to be received in-
correctly, hence the process of decoding attempts to map a
received message to the codeword sent with highest proba-
bility. Clearly codewords can be identified through matrix
multiplication (recall codewords must satisfy the equation
HcT = 0), but this provides little guidance for messages that
are not valid codewords. For a given channel model, the cor-
responding highest-likelihood codeword for each message
could be pre-computed and stored in an exponentially-large
lookup table, however, as the block length grows large this
approach rapidly becomes infeasible. We will see later that
long block lengths provide better performance, hence we
seek a general algorithm to map a received message to its
highest-likelihood codeword.

Gallager initially considered decoding in the presence of a
binary symmetric channel [6], the simplest channel error
model. A binary symmetric channel (BSC) with parame-
ter p has a binary alphabet with equal cross-over probability
p. That is to say, for an input symbol xt at time t from the
alphabet xt ∈ I := {−1,+1}, the channel output symbol at
time t is given by yt ∈ O := {−1,+1}, where

Pr[yt = −1|xt = 1] = Pr[yt = 1|xt = −1] = p.

Richardson and Urbanke considered decoding over a larger
variety of memory-less (where each message bit is trans-
mitted independently) channel models, which we consider
in section 3.3, but required the channels retain the output-
symmetric property, namely for any symbols in the input al-
phabet i ∈ I and output alphabet o ∈ O,

Pr[yt = −o|xt = i] = Pr[yt = o|xt = −i].

2.3 Message-passing decoding

We now describe two decoding algorithms proposed by Gal-
lager [6] and then consider their performance. A message
passing algorithm proceeds by exchanging messages be-
tween adjacent nodes in the graph. The decoding process is
considered to operate in rounds, where in each round a value
from some message alphabet M is sent from each message
node to its adjacent check nodes, and the check nodes re-
spond with a value per adjacent message node.

In the first round, each message node simply sends the value
initially received on the channel, requiring O ⊂ M. The
check nodes process these messages, and respond in kind
with a message based upon the messages received from ad-
jacent message nodes. At the start of the following round,
the message nodes process the messages received from adja-
cent check nodes and, in combination with the value received
on the channel, compute a new message value to send to the
check nodes. This process continues indefinitely, hopefully
converging on the maximum-likelihood codeword for the re-
ceived message.

The decoding algorithms presented here, and, indeed, all the
algorithms considered in this paper, generate messages based
on only extrinsic information. That is, the messages sent to a
particular node are in no way dependent on any messages re-
ceived from that node. This property turns out to be essential
in proving performance bounds for the decoding algorithms,
and will be considered further in section 4.2.

For continuity, we will express all decoding algorithms in the
style of Richardson and Urbanke [14], regardless of their ori-
gin. For each algorithm, we will define two message maps,
one for the message nodes Ψv : O×Mdv−1 → M, and one
for the check nodes Ψc : Mdc−1 → M. We start by exam-
ining Gallager’s original algorithms over a discrete message
alphabet, so-called hard-decision algorithms.

2.3.1 Gallager’s algorithm A

Gallager first proposed an algorithm in which, for each mes-
sage node, adjacent check nodes simply sent the XOR of the
messages received from all other incident message nodes:
mi = m1 ⊕ . . . ⊕ mdc−1. If one considers the message
alphabet to be M := {−1,+1}, this can be written

Ψc(m1, . . . ,mdc−1) =
dc−1∏
i=1

mi.

The message nodes continue to send the received bit to a
check node unless the messages received from all other in-
cident check nodes are identical, and disagree with the re-
ceived bit: Ψv(m0,m1, . . . ,mdv−1) = −m0 if and only if
m1 = . . . = mdv−1 = −m0, m0 otherwise.

2.3.2 Gallager’s algorithm B

Gallager observed that the above algorithm could be im-
proved by allowing message nodes to switch their value
sooner. In his revised algorithm, for each round, j, there is a
universal threshold value, bj , at which point message nodes
should switch their value. The message node message map
now varies with respect to the round. We denote the map at
round j as Ψj

v; hence, Ψj
v(m0,m1, . . . ,mdv−1) = −m0 if

and only if |{i : mi = −m0}| ≥ bj , m0 otherwise. The map
for check nodes remains unchanged.

2.4 Performance

The performance of a decoding algorithm can be described
as a function of a channel parameter. We would like to find a
threshold value below which the decoding algorithm is guar-
anteed to succeed, or at least do so with high probability. The
BSC is well known to have a Shannon capacity of

CBSC(p) = 1 + p log p+ (1− p) log(1− p),

hence we can directly compare the performance of the above
decoders against the theoretical capacity limit for the BSC.

3

As stated above, we wish to find a threshold value, p∗, below
which, if we run a message-passing decoder long enough, it
will converge to the correct message.

We focus our attention on determining the probability that a
particular message node remains in error after some number
of rounds, j. We begin by outlining Gallager’s intuitive anal-
ysis, which defines a recursive expression for the probability
of sending an incorrect message.

2.4.1 Recursive enumeration

Let pj be the probability that a message node, m, has an
incorrect value in round j. Clearly p0 = p. We are inter-
ested in the cases where limj→∞ pj = 0. For Gallager’s
algorithm A, there are precisely two ways the message node
could be in error in round j+1. Either it initially received the
wrong message, or it initially received the correct message,
but was convinced to change by its check nodes. It is also
possible, however, that the message was originally received
in error, but corrected in round j+1. Recall a message node
only changes its message if all of its other check nodes are in
agreement. A check node sends the correct value to a mes-
sage node precisely when an even number (including zero)
of its incident message nodes (other than m) are correct.
With appropriate independence assumptions about message
bits (which we shall return to examine in section 4.2), this is
given by

1 + (1− 2pj)dc−1

2
. (1)

Hence the probability the message was received in error but
corrected in round j + 1 is precisely

p0

[
1 + (1− 2pj)dc−1

2

]dv−1

.

By symmetry, the probability the message was received cor-
rectly by coerced into an incorrect value is given by

(1− p0)
[
1− (1 − 2pj)dc−1

2

]dv−1

.

By combining these three cases, we have

pj+1 = p0 − p0

[
1 + (1− 2pj)dc−1

2

]dv−1

+ (1 − p0)
[
1− (1 − 2pj)dc−1

2

]dv−1

. (2)

As noted by Richardson and Urbanke [14], for a fixed p j ,
pj+1 is an increasing function of p0. Similarly, in the base
case, for a fixed p0, pj+1 is an increasing function of pj .
Therefore, by induction, pj is an increasing function of p0.
Let p∗ be the supremum of all values p0 ∈ [0, 1] such
that limj→∞ pj = 0. Gallager showed for a certain set of

explicitly-constructed graphs, which satisfied the indepen-
dence criteria mentioned above, that limj→∞ pj = 0 for all
p < p∗.

This formula can clearly be generalized to Gallager’s Algo-
rithm B by summing over the number of check nodes in ex-
cess of bj (equation 2 is simply equation 3 with bj = dv−1):

pj+1 = p0 − p0

dv−1∑
t=bj

(
dv − 1

t

)[
1 + (1− 2pj)dc−1

2

]t

·
[
1− (1− 2pj)dc−1

2

]dv−1−t

+ (1− p0)
dv−1∑
t=bj

(
dv − 1

t

)[
1− (1− 2pj)dc−1

2

]t

·
[
1 + (1− 2pj)dc−1

2

]dv−1−t

. (3)

We are looking to minimize pj+1. Gallager showed the equa-
tion above is minimized when the probability of correcting
the message using the check nodes and the threshold b j just
exceeds the probability of receiving the correct message ini-
tially [6]. This corresponds to the smallest integer bj that
satisfies:

1− p0

p0
≤
[
1 + (1− 2pj)dc−1

1− (1− 2pj)dc−1

]2bj−dv+1

. (4)

Once again, the supremum p∗, of all values of p0 for which
the algorithm converges (limj→∞ pj = 0), signifies the
capacity threshold. Given appropriately-constructed codes
that satisfy the necessary independence conditions, the same
argument holds as before that for all values p0 < p∗,
limj→∞ pj = 0.

3 Expanded alphabets

Subsequent to Gallager’s initial work, researchers discovered
that decoding performance can be improved by extending the
message alphabet used by the decoder. Proposals have in-
cluded both larger discrete alphabets and continuous ones.
Unfortunately, the additional decoder complexity makes the
algorithms more difficult to analyze using the asymptotic
analysis above, as the number of coupled equations grows
linearly in the size of the message alphabet [14]. Instead,
Richardson and Urbanke developed a numerical procedure
to approximate the threshold value by modeling the evolu-
tion of message probability densities [14].

3.1 Decoding

We first introduce two additional decoding algorithms that
utilize expanded message alphabets, one with a ternary al-
phabet, and one continuous, and then consider computing

4

their threshold values through density evolution. We will
see shortly that both algorithms provide substantial improve-
ments upon their predecessors.

3.1.1 Mitzenmacher’s algorithm E

Mitzenmacher extended Gallager’s second algorithm in a
straightforward fashion to allow nodes to be indecisive [12].
The first step is simply to expand the decoder’s message al-
phabet to include erasures, M := {−1, 0, 1}. The message
node map is then redefined to calculate a rough majority of
the check nodes, giving the original received message certain
weight, wj (somewhat analogous to Gallager’s bj), which
varies as rounds progress. This can be expressed mathemat-
ically through the sgn function:

Ψv(m0,m1, . . . ,mdv−1) = sgn(wjm0 +
dv−1∑
i=1

mi).

Once again, the map for the check nodes remains the same
(note the typo in [14]):

Ψc(m1, . . . ,mdc−1) =
dc−1∏
i=1

mi.

3.1.2 Belief propagation

The increased performance of a ternary message alphabet
clearly suggests considering even larger alphabets. Indeed,
Richardson and Urbanke construct a decoder for Gaussian
channels using an alphabet of eight symbols [14, ex. 7],
which we will not consider here. The limit, obviously, is
a completely continuous message alphabet. The class of
message-passing algorithms based on continuous alphabets
is known as sum-product analysis, or belief propagation [10],
and provides more robust decoding at the expense of in-
creased decoder complexity.

A message (m, c) sent by a message node in hard-decision
algorithms represents m’s “best guess” of its correct value,
based on received information from all adjacent check nodes
other than c. Using a continuous alphabet, belief propagation
is instead able to communicate an approximate probability,
expressed as posterior densities, that the variable associated
with m takes on the value in question.

Similarly, messages (c,m)z sent from a check node to a mes-
sage node (there is actually only one message per round as
before, but it is convenient for the time being to consider
sending multiple messages for each possible value ofm) rep-
resent the probability, conditioned on information received
from all other adjacent message nodes, that the check node
will be satisfied if node m takes value z. Following the
framework of [14] for a BSC, it is convenient to express the
two relevant probabilities, p1 and p−1 as a log-likelihood ra-
tio, log p1

p−1
. Since p1 + p−1 = 1 on a BSC, one message

is sufficient to precisely communicate two conditional prob-
abilities.

We make a similar independence assumption as before, i.e.
the random variables on which messages are based are in-
dependent, in which case messages represent distributions
conditioned on the respective value of the variable, but con-
ditionally independent of everything else. We now formal-
ize the behavior of both message and check nodes in belief
propagation using the message map abstraction of Richard-
son and Urbanke [14].

As with all message passing algorithms, message nodes ini-
tially send the received value of their associated variable. In
successive rounds, each message node computes an updated
conditional distribution based upon the messages received
from check nodes, yet continuing to respect the extrinsic
principle introduced above. Technically, the message sent
is the a posteriori probability that the value of the associated
variable based on the values of all nodes observed up to and
including the last round. Since each received distribution is
independent, the distribution conditioned on all of the vari-
ables is simply their product, which, in log-likelihood form,
can be expressed as

Ψv(m0,m1, . . . ,mdv−1) =
dv−1∑
i=0

mi.

The computations performed by check nodes are slightly
less intuitive. As stated above, a message (c,m) is a log-
likelihood ratio log p̃1

p̃−1
, where p̃±1 is the probability the

check node is satisfied of m takes on the value ±1. Recall
the incoming messages from each of the dc − 1 other adja-
cent message nodes m′ �= m are of the form log pm′

1 /pm′
−1.

Hence p̃±1 is simply the probability that

dc−1∏
m′=1

pm′
±1 = ±1.

By using a clever change of variables and appealing to the
Fourier transform over GF(2), Richardson and Urbanke [14]
show that this calculation can be represented by the follow-
ing message map

Ψc(m1, . . . ,mdc−1) = log

(
1 +

∏dc−1
i=1 tanh 1

2mi

1−∏dc−1
i=1 tanh 1

2mi

)
.

3.2 Performance

As before, we can construct a coupled set of recursive equa-
tions for Mitzenmacher’s algorithm to compute the evolution
of p−1, p0, and p1 through successive rounds. In the interest
of brevity, we do not show them here, but suffice it to say
they are somewhat unwieldy [14]. Note that as with Gal-
lager’s bj’s, we need to determine good values of wj for each

5

iteration, and there is no clear ordering amongst the three val-
ues, hence we cannot derive an equation for optimum values
of wj analogous to equation 4 for bj .

One alternative approach, suggested by Richardson and Ur-
banke, is to set a desired weight for erasures when compared
to incorrect values, say 1/2, and then use dynamic program-
ming to compute the optimum weight for each round. They
find w1 = 2;wj = 1, j ≥ 2 is optimum for a (3, 6)-regular
code [14]. While broadly applicable, this is computation-
ally intensive, and becomes infeasible for larger alphabets.
Hence, they suggest using a sensible heuristic based on the
channel characteristics, but make no further claims about
optimality. Thresholds computed using this approach are
shown in table 1, along with thresholds for the other decod-
ing algorithms.

3.2.1 Density evolution

Unfortunately the asymptotic analysis fails us when consid-
ering belief propagation algorithms. Richardson and Ur-
banke instead developed a numerical procedure to approx-
imate the threshold, p∗, below which the algorithms are
asymptotically successful [14]. Rather than explicitly track-
ing the values of each message during each round, it mod-
els the evolution of the probability density functions over all
possible values of the messages. Hence, they termed their
procedure “density evolution.”

Returning to the notation introduced previously, let ΠM de-
note the space of probability distribution defined over the al-
phabet M. We say a message m ∈ M is a random variable
distributed according to some P ∈ ΠM, and let P (j) denote
the common density associated with messages from message
nodes to check nodes in round j. Similarly, Q (j) represents
the density of messages from check nodes to message nodes
in the same round. Clearly P (0) is simply the density of the
received values.

Density evolution iterates over P (j), which requires the abil-
ity to calculate P (j+1) from P (j). Richardson and Ur-
banke [14] describe a convenient change of measure from a
density of log-likelihoods P to an equivalent density P̃ over
GF(2)× [0,∞),

P̃ 0(y) =
1

sinh(y)
P
(
− log tanh

y

2

)
,

P̃ 1(y) =
1

sinh(y)
P
(
log tanh

y

2

)
,

which allows us to determine the density Q̃(j) as

ˆ̃Q
(j),0

− ˆ̃Q
(j),1

=
(
ˆ̃P

(j−1),0

− ˆ̃P
(j−1),1

)dc−1

ˆ̃Q
(j),0

+ ˆ̃Q
(j),1

=
(
ˆ̃P

(j−1),0

+ ˆ̃P
(j−1),1

)dc−1

, (5)

dv dc Rate p∗(A) p∗(B) p∗(E) p∗(BP) p∗opt

3 6 0.5 0.04 0.04 0.07 0.084 0.11
4 8 0.5 0.047 0.051 0.059 0.076 0.11
5 10 0.5 0.027 0.041 0.055 0.068 0.11
3 5 0.4 0.061 0.061 0.096 0.113 0.146
4 6 0.333 0.066 0.074 0.09 0.116 0.174
3 4 0.25 0.106 0.106 0.143 0.167 0.215

Table 1: The capacity threshold for each of the decoding
algorithms. The optimal threshold is given by the Shannon
limit for a BSC multiplied by the rate of the code. (From [14,
Tbl. 1])

where ˆ̃P denotes the Laplace transform of P̃ . Hence, we can
compute P (j+1) from P (0) and P (j) using the FFT:

F
(
P (j+1)

)
= F

(
P (0)

)(
F
(
Q(j)

))dv−1

.

Threshold values for belief propagation over the BSC calcu-
lated by Richardson and Urbanke using the algorithm above
are shown in in table 1. In this case the initial density func-
tion is given by

P (0)(x) = pδ

(
x+ log

(
1− p

p

))

+ (1 − p)δ
(
x− log

(
1− p

p

))
,

where δ is the Dirac delta function.

3.3 General channel models

The beauty of Richardson and Urbanke’s density evolution is
that it does not depend on the underling channel model. Pro-
vided the channel meets the symmetry requirements men-
tioned previously, it suffices to express the initial variable
settings as a probability density, and run the density evalua-
tion procedure for the desired decoder.

3.3.1 Continuous additive channels

An important class of channels with practical implications is
memory-less with binary input and continuous output and
additive noise. Perhaps the best known example of such
a channel is the binary additive white Gaussian noise (BI-
AWGN) channel, for which Richardson and Urbanke pro-
vide the following equation for initial density

P0(
2
σ2

x) =
σ

2
√
2π

e
−(x−1)2

2σ2 .

They derive a similar expression for the binary Laplace (BIL)
channel. Using these equations, they are able to generate
columns of table 1 for belief propagation over these two
channel models as well.

6

3.3.2 Physical degradation

For each of the three channels considered so far, namely
BSC, BIAWGN, and BIL, there is a real-valued channel pa-
rameter that reflects a natural ordering with respect to chan-
nel capacity. That is, as the channel parameter increases, the
capacity decreases. In some cases, however, a class of chan-
nels may not have such a natural ordering, yet it would be
useful if one could still define a partial ordering with respect
to a particular choice of code and decoder.

Richardson and Urbanke prove just such a result for a well-
known class of channels that can be regarded as physically
degraded [14, Thm. 1]. Let channel W have transition prob-
ability pW (y|x). We say W ′ is physically degraded with
respect to W if pW ′(y′|x) = PQ(y′|y)pW (y|x) for some
auxiliary channel Q. They prove that for two memory-less
channels W and W ′ satisfying the symmetry conditions ex-
pressed earlier, where W ′ is physically degraded with re-
spect to W , a belief-propagation decoder will perform at
least as well on W as it does on W ′. Formally, let p be the
expected fraction of incorrect messages passed (again, with
appropriate independence assumptions) in the jth round of
decoding a message passed over channel W , and let p ′ cor-
respond to the value over W ′. Then p ≤ p′.

This monotonicity guarantee has important consequences for
practical implementations of decoders, as channels observed
in practice can often be considered to be composed of multi-
ple primitive channels. For instance, concatenations of BSC,
BIAWGN channels, Cauchy channels, and even the erasure
channels we shall introduce shortly are all monotone with
respect to a belief propagation decoder.

4 Random graphs

The previous analysis made significant assumptions about
the independence of messages used during the decoding
process. Gallager deliberately constructed codes satisfying
the required constraints. Luby, Mitzenmacher, Shokrollahi,
and Spielman further showed that such graphs can be ob-
tained by selecting a random member of an ensemble [8].
Their “concentration theorem” shows that a random graph
will do; the behavior of any member of the ensemble con-
verges to the expectation exponentially fast in the block
length. They initially proved the theorem for Gallager’s
hard-decision decoders in the BSC, but Richardson and Ur-
banke extended it for message-passing decoders in an arbi-
trary channel model [14], which we will show here. Before
doing so, however, we first discuss how to construct ensem-
bles of random graphs and observe a fact about the tree-like
structure of random graphs.

4.1 Ensembles

For a (dv, dc)-regular code of length n, we define the en-
semble Cn(dv, dc) in the following fashion. Consider label-

c

m

Figure 2: A tree-like decoding neighborhood, N 2
e , of depth

2 about e = (m, c). The message (m, c)1 depends on all of
the message nodes at the base of the tree. (Adapted from [8,
fig. 1] and [14, fig. 2].)

ing the message and check nodes, ordering the ndv edges
in the graph, and connecting them in order to the message
nodes. Hence, edges edv(i−1)+1 . . . edvi are adjacent to mes-
sage node i. To connect the edges to check nodes, we define
a permutation π on the set {1 . . . ndv}. For each edge ei, let
ei = (i, π(i)). This induces a uniform distribution on the en-
semble Cn(dv, dc). Both Luby, Mitzenmacher, Shokrollahi,
and Spielman [8] and Richardson and Urbanke [14] note that
while multiedges are strictly allowed, codes perform better
in practice if they are removed.

4.2 Tree-like neighborhoods

Let N 2j
e denote the directed neighborhood of an edge e =

(m, c) of depth 2j. Figure 2 depicts N 2
e . It turns out that the

independence assumption made previously, namely that an
extrinsic message set on an edge e = (m, c) in round j is in-
dependent of all previous messages sent on (c,m), is equiv-
alent to requiring there are no cycles in the directed neigh-
borhood of depth 2j. We call such a neighborhood tree-like.

For a random (dv, dc)-regular graph, there exists a constant γ
depending on j and the maximum degree such that the prob-
ability that N 2j

e is not tree-like is ≤ γ/n. This is proven by
Richardson and Urbanke [14, App. A]; we give an intuition
due to Luby, Mitzenmacher, Shokrollahi, and Spielman.

There are fewer than (dvdc)j nodes in N 2j
e . Consider ex-

posing the neighborhood edge by edge. The probability that
the exposed edge is incident on a node already in the neigh-
borhood is clearly bounded above by dvdc(dvdc)j/(n −
(dvdc)j). Thus, by the union bound, the probability of any
exposed edge being a member of the neighborhood previ-
ously is at most (dvdc)2j+1/(n − (dvdc)j), which can be
made less than γ/n for an appropriate choice of γ dependent
only on j and the maximum degree.

4.3 Concentration theorem

We now turn to the concentration theorem, first proved by
Luby, Mitzenmacher, Shokrollahi, and Spielman [8, Thm.

7

1], and trivially generalized by Richardson and Urbanke [14,
Thm. 2]. We will use the notation from Richardson and
Urbanke. Formally, for some integer j > 0, let Zj be a
random variable representing the number of edges that pass
incorrect messages from message nodes to check nodes in
round j of a message passing algorithm, and let p be the
expected fraction of incorrect messages passed along edges
with a tree-like neighborhood of depth at least 2j at the jth
iteration. There exists a positive constant β such that for any
ε > 0,

Pr[|Z − ndvp| > ndvε] ≤ 2e−βε2n. (6)

This implies that if a message-passing decoder converges for
some error probability p that converges to 0, there exists a
sufficiently large n such that it correctly decodes all but an
arbitrarily small fraction of message nodes with high proba-
bility.

We first observe that

|E[Z]− ndvp| < ndvε/2. (7)

This follows from linearity of expectation. Let E[Z i] be the
expected number of incorrect messages passed along edge
ei, averaged over all possible graphs and decoder inputs. By
symmetry,

E[Z] =
∑

i∈[ndv]

E[Zi] = ndvE[Z1].

Note E[Z1] can be written conditionally as

E[Z1] = E[Z1|N 2j
e1

tree− like] Pr[N 2j
e1

tree− like]

+ E[Z1|N 2j
e1

not tree− like] Pr[N 2j
e1

not tree− like],

so it follows that

ndvp
(
1− γ

n

)
≤ E[Z] ≤ ndv

(
p+

γ

n

)
.

The desired bound follows, provided n > 2γ/ε.

We are now prepared to give an edge-exposure Martingale
argument to prove the theorem, due to Richardson and Ur-
banke. Consider (G,R) ∈ Ω, where G is a graph in the
ensemble, R is setting of the variables, and Ω is the respec-
tive probability space. We now define a refinement = i for
0 ≤ i ≤ (dv + 1)n, ordered by partial equality. That is to
say (G,R) =i (G′, R′) implies (G,R) =i−1 (G′, R′). Now
consider proceeding down the equivalence classes of this re-
finement. In particular, for the first dvn steps, we expose the
edges of the graph G in some order. The last dv steps sim-
ply expose the settings of the variables. (G,R) =i (G′, R′)
implies that the information revealed up to the ith step is the
same for both pairs.

We now define Zi as the expectation of Z (the number of
edges set to pass incorrect messages from message to check
nodes in round j) in (G,R) given some refinement i:

Zi(G,R) = E[Z(G′, R′)|(G′, R′) =i (G,R)].

Clearly Z0 = E[Z] and Z(dv+1)n = Z; hence, by construc-
tion, Z0, Z1, . . . , Z(dv+1)n forms a Doob’s Martingale [13,
ex. 4.2].

We claim that consecutive values differ only by a constant,
that is

|Zj+1(G,R)− Zj(G,R)| ≤ αj ,

for some αi that depends only on j and the maximum de-
gree. Richardson and Urbanke provide a formal proof; we
provide the intuition of Luby, Mitzenmacher, Shokrollahi,
and Spielman, which is based on another edge-exposure ar-
gument. The value of |Zj+1(G,R) − Zj(G,R)| is clearly
bounded by the maximum difference between conditional
expectations. Intuitively, for j ≤ ndv, this is bounded by
the maximum difference between any two graphs that differ
in the placement of two edges (since the graphs are defined
by permutations, if they differ in one edge, they must differ
in at least two). The placement of two graph edges can only
affect a constant (in terms of j and the maximum degree)
number of trees. Differences in the last n exposures, that is
a setting of the variables, can affect only the neighborhood
(with depth 2j) of that variable, the size of which is again
clearly constant in j and the maximum degree.

We can now apply Azuma’s inequality [13, Thm. 4.16] to
the Martingale, which says

Pr[|Zm − Z0| > ndvε/2] ≤ 2e−βε2n,

for some constant β dependent on dv and αi (Richard-
son and Urbanke show 1/(544d2j

v d2j
c) will suffice). Recall

Z0 = E[Z], and Zm = Z; hence, we can substitute this into
equation 7, which proves the theorem.

4.4 Finishing up

The theorem itself is somewhat unsatisfying, however, as it
only proves that the decoder correctly decodes all but a small
fraction of the bits with high probability. We would like to
be assured the remaining bits can be corrected as well. It
turns out the success of the remaining nodes depends on the
non-existence of small cycles in the graph.

As discussed before, Gallager deliberately constructed his
codes to avoid cases with small cycles. Luby, Mitzenmacher,
Shokrollahi, and Spielman [7, 8] suggest a small change that
can be made to any random graph to ensure it meets the
necessary requirements as well. Basically, they add a small
number of additional check nodes, and construct a regular
graph of degree 5 between the message nodes and the new
nodes.

Luby, Mitzenmacher, Shokrollahi, and Spielman then appeal
to a result on expander graphs by Sipser and Spielman [16]
which shows a decoder that succeeds with high probability
on such graphs. It turns out this change in decoders is un-
necessary, however, as Burshtein and Miller [2] later showed

8

that a hard-decision decoding algorithm is guaranteed to suc-
ceed once it has corrected a sufficient number of message
nodes, and the theorem above shows that we can correct
down to an arbitrary fraction with high probability.

5 Irregular Codes

Up to this point we’ve considered only regular codes, as pro-
posed by Gallager [6]. It turns out better performance can be
obtained through be use of irregular graphs, as proposed by
Luby, Mitzenmacher, Shokrollahi, and Spielman [8]. An ir-
regular code allows the degree of nodes on either side of the
graph to vary. They show several codes with significantly
disparate node degrees that far out-perform the best regular
codes under both hard-decision decoding and belief propa-
gation.

5.1 Code construction and decoding

Ensembles of irregular graphs are constructed in the same
fashion as regular graphs, except that the neither the number
of edges adjacent to each message node nor each check node
is constant. Luby, Mitzenmacher, Shokrollahi, and Spiel-
man [7] introduced the following notation to describe irreg-
ular graphs. Define an edge to have left (right) degree i if
the left (right) end point has degree i. Assume a graph has
some maximum message node degree d∗

v and check node de-
gree d∗c . Then an irregular graph is specified by sequences
(λ1, λ2, . . . , λd∗

v
) and (ρ1, ρ2, . . . , ρd∗

c
), where λi (ρi) is the

fraction of edges with left (right) degree i.

Intuitively, irregular codes should out-perform regular codes
for the following reason. Each message node in a regular
code is equally “protected.” That is to say, the number of
check nodes is constant for each message node. Clearly, the
larger the number, the greater the protection. Unfortunately,
as check nodes increase in degree, they become less reliable,
since they are dependent on more message nodes to be re-
ceived correctly. Regular codes are forced to balance these
requirements uniformly.

Irregular codes, on the other hand, are free to construct a cer-
tain fraction of extremely well protected message bits with-
out diluting the value of all check bits. This leads to a type of
“wave” effect (which Luby, Mitzenmacher, Shokrollahi, and
Spielman report observing in practice [8]) in which the well-
protected nodes are corrected first, and then propagate their
results through check nodes to those less well protected.

Decoding is performed using a generalization of Gallager’s
Algorithm B. The algorithm is essentially identical, except
that the threshold value bj,i is now also dependent on the
degree of the message node, i.

The difficulty in constructing irregular codes is figuring out
which irregular distributions perform well. It is not known
how to analytically determine the best codes (values λ and
ρ). Instead, Luby, Mitzenmacher, Shokrollahi, and Spielman

compute a linear programming approximation [8]. Given a
desired rate and fixed ρ, they determine a good λ by select-
ing a set L of candidate message node degrees, and attempt-
ing to satisfy the constraints given by the recursive probabil-
ity enumeration shown in the following section. Additional
constraints are inserted to ensure the resulting edge degree
distribution is possible in a connected, bipartite graph.

Luby, Mitzenmacher, Shokrollahi, and Spielman noted
that for their hard-decision decoder, experimental evidence
shows that the best codes use a fixed ρ. They provide the
following intuitive reasoning (which doesn’t hold up under
belief propagation—this is also seen experimentally). The
probability a check node sends the correct message to node
m in round j (receives an even number of errors) is

1 +
∑

i ρi(1− 2pj)i−1

2
, (8)

which is simply a generalization of equation 1 over the prob-
ability distribution of check node degrees ρ. For brevity, we
write ρ(x) =

∑
i ρix

i−1, hence equation 8 is just

1 + ρ(1− 2pj)
2

.

They claim, for small values of pi, that this is approximately

1− pi

dc∑
i=1

(i− 1)ρi,

which is minimized (subject to the constraints that the edges
form a connected, bipartite graph) when all check nodes have
as equal a degree as possible [8].

5.2 Performance

Luby, Mitzenmacher, Shokrollahi, and Spielman provide an
analytic evaluation for their hard-decision decoding algo-
rithm, deriving a recursive expression analogous to equa-
tion 3 [8, eqn. 8]):

pj+1 = p0 −
d�∑

i=1

λi

·

p0

i−1∑
t=bj,i

(
i− 1
t

)[
1 + ρ(1− 2pj)

2

]t

·
[
1− ρ(1− 2pj)

2

]i−1−t

+ (1− p0)
i−1∑

t=bj,i

(
i− 1
t

)[
1− ρ(1− 2pj)

2

]t

·
[
1 + ρ(1− 2pj)

2

]i−1−t
]
. (9)

9

As before, the optimal value of bj,i is the smallest integer
solution to

1− p0

p0
≤
[
1 + ρ(1 − 2pj)
1− ρ(1 − 2pj)

]2bj,i−i+1

.

They use these equations as constraints in the linear pro-
gramming procedure described above to generate several rate
1/2 irregular codes, which have threshold values p∗ up to
0.0627 with Gallager’s hard-decision decoder. Compare this
to the best performing regular code from table 1, which has
a p∗ threshold of only 0.051.

As with regular codes, irregular codes should similarly bene-
fit from more sophisticated decoders. Lacking the analytical
tools, Luby, Mitzenmacher, Shokrollahi, and Spielman were
only able to simulate the performance of a belief propagation
algorithm over their codes. Using their density evaluation
model, however, Richardson and Urbanke we able to numer-
ically compute performance bounds for belief propagation
over irregular codes [14]. They constructed two polynomials
defined by λ and ρ

λ(x) =
d∗

v∑
i≥2

λix
i−1, ρ(x) =

d∗
c∑

i≥2

ρix
i−1.

Using these polynomials, it turns out that the modifications
to account for irregular graphs are minor. Equation 5 be-
comes

ˆ̃Q
(j),0

− ˆ̃Q
(j),1

= ρ

(
ˆ̃P

(j−1),0

− ˆ̃P
(j−1),1

)
ˆ̃Q

(j),0

+ ˆ̃Q
(j),1

= ρ

(
ˆ̃P

(j−1),0

+ ˆ̃P
(j−1),1

)
,

and the resulting FFT simply

F
(
P (j+1)

)
= F

(
P (0)

)
λ
(
F
(
Q(j)

))
.

Using an irregular rate 1/2 code constructed by Luby,
Mitzenmacher, Shokrollahi, and Spielman, Richardson and
Urbanke calculate a threshold p∗ value of 0.094, which
substantially out-performs the best instance of belief-
propagation over a regular rate 1/2 code, shown in table 1
to have a threshold of 0.084.

6 Tornado codes

In an erasure channel, first introduced by Elias [5], each
codeword symbol is lost independently with a fixed constant
probability, p. This loosely models the behavior seen in most
packet-based networks, such as the Internet, as well as fail-
stop distributed computing environments. Hence codes well-
suited to this channel have many immediate applications.

The (Shannon) capacity of an erasure channel is 1 − p,
and Elias [5] further showed any rate R < 1 − p can be

achieved with a random linear code, including traditional
LDPC codes. It is easy to show that MDS codes of rate
R can recover from the loss of a fraction (1 − R) of their
codeword symbols. The main obstacle to the use of LDPC
codes in this channel is the complexity of encoding and de-
coding. As described previously, LDPC codewords con-
sist of n message nodes satisfying a set of constraints im-
posed by the m check nodes. Encoding a message of di-
mension n − m requires computing a codeword that satis-
fies the m constraints. This can clearly be done through ma-
trix multiplication in quadratic time. Unfortunately, this does
not approach the speed of efficient implementations of stan-
dard MDS codes such as Reed-Solomon. To address this,
Luby, Mitzenmacher, Shokrollahi, and Spielman developed
a class of rate R irregular low-density parity-check codes
for the erasure channel which can recover from the loss of
a (1− ε)(1−R) fraction of its message bits and can be both
encoded and decoded in near-linear time [7].

6.1 Code construction

Luby, Mitzenmacher, Shokrollahi, and Spielman suggest
avoiding satisfying constraints in the encoding process al-
together. Instead, they consider computing values for the
check nodes (using XOR as before), and sending their val-
ues along with the message nodes. Clearly this takes linear
time, and turns out to be the same rate—while the codewords
are longer (n+m bits) they now have a full n degrees of free-
dom. While we (and they) describe the code over GF(2), it
is important to note that it can be extended to any arbitrary
alphabet size, which will be useful in the applications dis-
cussed in the section 7.

Decoding over the erasure channel is straightforward. Pro-
vided the value of a check node and all but one of its ad-
jacent message nodes, the missing message node must be
the XOR of the check node and the other message nodes.
This does, however, require knowledge of the value of the
check node, which, since it is now being sent on the channel,
could be unknown. Luby, Mitzenmacher, Shokrollahi, and
Spielman avoid this by cascading a series of irregular LDPC
graphs, and decoding can be viewed as proceeding in stages.
Hence, at each stage, the correct values of the check nodes
are known. Figure 3 shows an example of such a cascade.

Formally, let β = 1 − R. If a code C(B) with n message
bits and βn check bits recovers from the loss of (1 − ε)βn
of its message bits, then they construct a family of codes
C(B0), . . . , C(Bm) where Bi has βin left nodes and βi+1n
right nodes. By selecting m so that βm+1n is about

√
n, the

check nodes of the last code can be encoded using a standard
quadratic time code C of rate R that can recover from the
loss of a β fraction of its message bits (e.g, a Reed-Solomon
code). We denote the cascaded code C(B0, B1, . . . , Bm, C).

10

Conventional
code

Encoding

Decoding

Figure 3: A cascade of three codes, depicting the direction
of encoding and decoding (adapted from [7, Fig. 3]).

It is easy to verify the code has n message bits and

m+1∑
i=1

βin+ βm+2n/(1− β) = nβ/(1− β)

check bits, resulting in a rate of R.

6.2 Performance bounds

A trade-off exists in the performance of a particular instance
of this code ensemble. Luby, Mitzenmacher, Shokrollahi,
and Spielman show that the number of erasures tolerated can
be made increasingly close to optimal in return for longer
decoder running time [7]. They label this tuning parameter
D, and prove that the code resulting from cascading versions
of the construction below with D = �1/ε� for a sufficiently
large n is a linear code, that, for any 0 < R < 1 and 0 <
ε < 1, can be successfully decoded in time O(n ln 1/ε) even
in the face of a (1 − R)(1 − ε) fraction of erasures with
probability 1−O(n−3/4) [7, Thm. 3].

We now give a brief overview of their suggested construc-
tion. The code used in each level of the cascade is based
upon a member of an irregular LDPC ensemble as de-
scribed in the preceding section, hence we denote the mes-
sage and check node degrees as λ and ρ as before. Let
C = C(B0, . . . , Bm, C), where B0 has n left nodes, and sup-
pose each Bi is chosen at random from the ensemble speci-
fied by λ and ρ with λ1 = λ2 = 0, and δ is such that

ρ(1− δλ(x)) > 1− x

(where λ(x) and ρ(x) are as before) for all 0 < x ≤ 1.
Luby, Mitzenmacher, Shokrollahi, and Spielman show that
if at most a δ-fraction of the codeword symbols are erased
independently at random, their decoding algorithm succeeds
with probability 1−O(n−3/4) [7, Thm. 2].2

2This seemingly magical constraint is the result of a sophisticated

A particular class of codes almost satisfying this requirement
is given by

λi = 1/(H(D)(i− 1)), ρi =
e−ααi−1

(i− 1)!
,

where H(x) is the harmonic sum, and αi is chosen to en-
sure the appropriate average check node degree, d̄c. Namely,
αεα/(eα − 1) = d̄c = d̄vβ. We say almost because λ2 �= 0.
As was done to avoid the small cycle problem previously,
Luby, Mitzenmacher, Shokrollahi, and Spielman describe a
small modification to B to obtain a satisfactory graph with
roughly the same properties [7], and term this class of distri-
butions “heavy tail.”

7 Implementation issues

As described above, tornado codes seem like an attractive
tool for communicating over erasure channels commonly
found in computer systems. It is not surprising, then, the
they have been proposed for use in a number of network-
ing applications, including bulk transfer [4], parallel down-
loading [3], and layered multicast. Tornado codes are not a
panacea, however, and in this section we detail several prag-
matic considerations that apply to real-world implementa-
tions.

7.1 Decoding complexity

There is no debating tornado codes are fast. Theoretical anal-
ysis of complexity in terms of big-Oh notation is useful to
an extent, but the utility of actual implementations depends
a great deal on the constant factors hidden by this analysis.
The performance of tornado Codes [7] has been shown to be
far superior to Reed-Solomon codes [4]. This stems to a cer-
tain degree from the differences in complexity. If an encoded
message has k message bits and l check bits, tornado code
decoding is linear in (k+l), while Reed-Solomon is linear in
kl. Equally as important in many applications, however, is
that tornado decoding is fundamentally an XOR operation,
while Reed-Solomon requires field operations. In fact, as
the size of the field grows larger, tornado operations become
even faster, as CPUs typically perform operations many (32
or 64) bits at a time, hence 32 XORs are often as fast as 1.

7.2 Decoding inefficiency

It is often useful to think of the bandwidth overhead of a cod-
ing scheme in terms of its decoding inefficiency. A message
of dimension k encoded at rate R will give rise to a code-
word of dimension k/R. If we think of each codeword sym-
bol as having dimension one, then receiving k symbols is the
minimum required to express the message. In an MDS era-
sure code, receiving exactly k symbols is sufficient. Tornado
codes are only approximately MDS, however.

differential-equation-based analysis [7, Sec. III] that we will not discuss
here.

11

In fully-cascaded form, a tornado code with message dimen-
sion k must be cascaded until the last layer has at most

√
k

message nodes, as a standard-erasure code requires quadratic
time to encode. For any rate, R, such a code has O(log 1/R k)
levels. In the analysis of the preceding section, we assumed
erasures were evenly distributed across levels. Of course,
there is some variance in this distribution. For a rate 1/2
code in the erasure channel model described above, the ex-
pected variance in the last level is 1/ 4

√
k = 0.063, hence

we expect to require 1.063 times the message length of the
codeword before decoding is successful [7].

Luby, Mitzenmacher, Shokrollahi, and Spielman suggest
ameliorating this issue by using many fewer layers, and con-
tinuing to use a random graph for the last level. In particular,
they report a code based on a three-layer cascade that re-
quires only 1.033 times the codeword length to decode, and
another, two-layer code, named “Tornado Z,” that requires
1.054 times optimal [4].

When using erasure codes over a packet-switched channel,
there is even more overhead. Throughout this paper, we have
assumed that we knew the associated node for each variable
received on the channel. That is, the output of the channel
was associated with the appropriate node in the LDPC graph.
This can often be done through temporal ordering. For an
erasure channel, however, assignment based on the order re-
ceived is doomed, as any erasure will cause the assignments
to become mis-aligned. Further, many network channels of
interest (e.g. the Internet) reorder packets as well, so even
without erasures, assignment is not straightforward.

Hence, each symbol of a codeword (packet) must be appro-
priately annotated with the node whose value it represents.
While the size of this annotation only grows as O(log n),
the necessary data framing and marshaling suggest that each
codeword symbol (packet) must be fairly long in compari-
son. Hence a practical implementation over a packet net-
work would likely work over an alphabet several orders of
magnitude larger than GF(2).

7.3 Block size

The obvious application for tornado codes is in block data
transfer. This was proposed by Byers, Luby, Mitzenmacher,
and Rege [4], and now forms the basis of the core technol-
ogy for an Internet content distribution company called Dig-
ital Fountain. By considering entire files (or blocks of files)
as messages, tornado codes can be used to break the file up
into many symbols (packets) which can be transmitted. For
instance, using a rate 1/2 encoding, the file is expanded into
a set of packets twice its size, the receipt of slightly over any
half of them is sufficient to decode the file.

As with any block code, however, decoding requires operat-
ing over the entire message length at once. This has several
implications.

7.3.1 Memory usage

As symbol sizes become larger, the memory requirements
of decoding an extremely long message grow rapidly. This
is especially important as efficiency goes up with both the
size of the codeword symbols and the length of the mes-
sage increase. Additionally, the proofs of decoding suc-
cess provided earlier all depended on a “sufficiently large”
message length, where n is non-trivial. Tornado Z, for ex-
ample, has 32,000 nodes. If each node is a ≈ 1500-byte
packet (maximum efficiency on an Ethernet network), de-
coding requires accessing 46 Megabytes of memory. Admit-
tedly, this can be paged to disk during decoding, but for high
degree graphs (Luby, Mitzenmacher, Shokrollahi, and Spiel-
man constructed graphs with degree 85) the working set will
be quite large, hence thrashing is likely.

7.3.2 Streaming

A hot topic in networking research and product development
today is streaming. Streaming is the process of delivering
data to a client at or above the rate at which it can be con-
sumed by the client, supporting simultaneous playback or
viewing of the received data. Audio and video content are
typical candidates for streaming delivery. One of the biggest
problems in streaming data is determining the rate at which
a consumer can receive the data, and adjusting accordingly.
Clearly if the client cannot consume data at a rate fast enough
to support playback this is infeasible, but Internet hosts of-
ten have unstable bandwidth capacities, hence even while
the long-term average is sufficient, short term variations may
cause data packets to be lost.

Erasure coding obviates the need to retransmit dropped pack-
ets to clients. In principle, if the message length is long
enough to see long-term average receive rates, and they are
large enough to support the information rate, it suffices sim-
ply to send the message symbols at a speed inversely propor-
tional to the information rate (rate 1/2 codes must be sent at
twice as fast as rate 1 codes to provide the same amount of
content), and ignore lost packets.

The problem, of course, is that tornado codes (indeed, any
block codes) cannot be decoded until the entire message is
received. Hence true streaming is impossible using such cod-
ing schemes. Instead, it is possible to simulate streaming by
breaking the stream up into blocks and sending a block at a
time, playing back one block while receiving the next. This
is the approach taken by Digital Fountain. Unfortunately,
this has an obvious drawback: latency. Both encoding and
decoding must be delayed by a full block size. Further, en-
coding cannot commence until the entire block is available.
In the case of recording a live data stream, the encoder must
parallelize encoding a block with beginning to record the fol-
lowing block.

12

7.4 Redundant delivery

An attractive consequence of the independence of symbols
within a codeword is that, assuming the rate is low enough,
a client can arrange to receive symbols from a number of
sources. For instance, consider encoding a file at rate 1/2
into blocks b1, . . . , bn, and serving the encoded data stream
from two servers. By staggering the delivery such that at any
point in time server 1 is sending bt and server 2 is sending
b(t+n/2 mod n), a client can receive the file in slightly over
half the time (assuming it is able to consume the packets at
the rate they are being sent from each server).

Clearly the code rate can be set sufficiently low that the
chance of receiving redundant packets, even from uncoor-
dinated servers, is arbitrarily low. This represents an attrac-
tive opportunity for network clients with disjoint bottlenecks
along paths to multiple servers. That is to say clients which,
while receiving data at full capacity from one server, can
additionally receive data from a different server simultane-
ously without decreasing the rate of the first flow. Such a
scheme was proposed recently by Byers, Luby, and Mitzen-
macher [3]. They note, however, that the number of clients
meeting the disjoint bottleneck requirement is small.

7.5 Channel assumptions

Unfortunately, while the erasure channel provides a good ba-
sic model of the Internet “channel,” it is far from exact. In
particular, the Internet is a shared channel, hence optimal-
ity cannot be considered from the point of view of one flow
or client alone. Secondly, routers in the Internet maintain
queues, which function to defeat the memory-less assump-
tion. These two facts cause the actual utility of tornado codes
to be somewhat lower than one might imagine.

7.5.1 Congestion

The major drawback of both applications described above is
that they waste bandwidth. From the point of view of the
client, these schemes are great—it receives data at close to
the optimum rate of the channel. From the point of view of
the network, however, these schemes are extremely wasteful.
The capacity of an Internet path is limited by the bottleneck
link, that is the edge along the path with the smallest ca-
pacity. Packets arriving at that edge at a rate exceeding the
link capacity are dropped (not exactly, we’ll return to this in
a moment). Hence while they do not affect the capacity of
the bottleneck link, they are competing with other traffic for
scarce capacity at every point prior. If the source does not
adjust its rate of sending, these extra packets will continue to
steal resources from other flows while providing no marginal
utility to the client.

7.5.2 Queues

Further, the Internet is far from memory-less. The Internet is
a store-and-forward network, meaning each packet is stored
at each router before being forwarded on the next link on
the path to the destination. If the rate of incoming packets
exceeds the capacity of the outgoing links, a queue builds
up at the router. Most routers in the Internet today perform
drop-tail queuing, which means packets are simply dropped
as the queue overflows. This leads to a high correlation be-
tween packet drops, and destroys the independence assump-
tions upon which tornado codes are based. This bursty loss
model may negatively affect the decoding success probabil-
ity. One might hypothesize that RED (Random, Early De-
tection) routers, which attempt to drop packets at something
approaching a rate proportional to the size of the flow, might
provide a better substrate for tornado codes.

8 Conclusion

In this paper, we have summarized the state of the art in low-
density parity-check codes, with particular emphasis on the
work of Luby, Mitzenmacher, Shokrollahi, Spielman [7, 8],
and Richardson and Urbanke [14]. We introduced Gallager’s
initial, regular LDPC codes, and gave a brief performance
analysis of his proposed decoding algorithms. We then
demonstrated the additional performance gains achieved by
considering decoders with expanded alphabets, and extend-
ing the family of codes to include those based on random and
irregular bipartite graphs.

We then examined the application of LDPC codes to the era-
sure channel, as pioneered by Luby, Mitzenmacher, Shokrol-
lahi, and Spielman. After explaining the construction of their
turbo codes, we provided highlights of their performance
analysis. Finally, we considered the application of LDPC-
based erasure codes to several problems in networking, and
indicated several issues of concern for practical deployment
of such schemes. In particular, the requirements for large
block and symbol sizes, combined with the mischaracteri-
zation of the Internet channel, give pause, especially when
deploying protocols based on tornado codes without appro-
priate throttling on bandwidth utilization.

References

[1] BERROU, C., GLAVIEUX, A., AND THITIMAJSHIMA,
P. Near shannon limit error-correcting coding and de-
coding: Turbo-codes. In Proc. IEEE International
Communications Conference (1993).

[2] BURSHTEIN, D., AND MILLER, G. Expander graph
arguments for message passing algorithms. IEEE
Trans. on Information Theory 47 (Feb. 2001), 782–790.

[3] BYERS, J. W., LUBY, M., AND MITZENMACHER, M.
Accessing multiple mirror sites in parallel: Using tor-

13

nado codes to speed up downloads. In Proc. IEEE In-
focom (Mar. 1999), pp. 275–283.

[4] BYERS, J. W., LUBY, M., MITZENMACHER, M.,
AND REGE, A. A digital fountain approach to reliable
distribution of bulk data. In Proc. ACM SIGCOMM
(Aug. 1998), pp. 56–67.

[5] ELIAS, P. Coding for two noisy channels. In
Proc. Third London Symposium on Information Theory
(1955), pp. 61–76.

[6] GALLAGER, R. G. Low-Density Parity-Check Codes.
PhD thesis, Massachusetts Institute of Technology,
1963.

[7] LUBY, M. G., MITZENMACHER, M., SHOKROLLAHI,
M. A., AND SPIELMAN, D. A. Efficient erasure cor-
recting codes. IEEE Trans. on Information Theory 47,
2 (Feb. 2001), 509–584.

[8] LUBY, M. G., MITZENMACHER, M., SHOKROLLAHI,
M. A., AND SPIELMAN, D. A. Improved low-density
parity-check codes using irregular graphs. IEEE Trans.
on Information Theory 47, 2 (Feb. 2001), 585–598.

[9] MACKAY, D. J. C. Turbo codes are low density parity
check codes. http://www.cs.toronto.edu/
˜mackay/abstracts/turbo-ldpc.html.

[10] MACKAY, D. J. C. Good error correcting codes based
on very sparse matrices. IEEE Trans. on Information
Theory 45 (Mar. 1999), 399–431.

[11] MACKAY, D. J. C., MCELIECE, R. J., AND CHENG,
J.-F. Turbo coding as an instance of pearl’s ‘belief
propagation’ algorithm. IEEE J. on Selected Areas in
Communications 17 (1999), 1632–1650.

[12] MITZENMACHER, M. A note on low density parity
check codes for erasures and errors. SRC technical note
1998-017, Dec. 1998.

[13] MOTWANI, R., AND RAGHAVAN, P. Randomized Al-
gorithms. Cambridge University Press, 1995.

[14] RICHARDSON, T. J., AND URBANKE, R. L. The
capacity of low-density parity-check codes under
message-passing decoding. IEEE Trans. on Informa-
tion Theory 47, 2 (Feb. 2001), 599–628.

[15] SHANNON, C. E. A mathematical theory of communi-
cation. Bell System Technical Journal 27 (July 1948),
379–423.

[16] SIPSER, M., AND SPIELMAN, D. Expander codes.
IEEE Trans. on Information Theory 42 (Nov. 1996),
1710–1722.

[17] VANSTONE, S. A., AND VAN OORSCHOT, P. C. An
Introduction to Error Correcting Codes with Applica-
tions. Klewer Academic Publishers, 1989.

14

