
IEEE/ACM TRANSACTIONS ON NETWORKlNG, VOL. 6, NO. 4, AUGUST 1998

Explicit Allocation of Best-Effort
Packet Delivery Service

David D. Clark, Fellow, IEEE, and Wenjia Fang

Abstract- This paper presents the “allocated-capacity”
framework for providing different levels of best-effort
service in times of network congestion. The “allocated-
capacity” framework-extensions to the Internet protocols and
algorithms-can allocate bandwidth to different users in a
controlled and predictable way during network congestion. The
framework supports two complementary ways of controlling
the bandwidth allocation: sender-based and receiver-based. In
today’s heterogeneous and commercial Internet the framework
can serve as a basis for charging for usage and for more efficiently
utilizing the network resources. We focus on algorithms for
essential components of the framework: a differential dropping
algorithm for network routers and a tagging algorithm for
profile meters at the edge of the network for bulk-data transfers.
We present simulation results to illustrate the effectiveness of
the combined algorithms in controlling transmission control
protocol (TCP) traffic to achieve certain targeted sending rates.

Znriex Terms- Internet protocol, packet networks, quality of
service, rate control, TCP.

I. INTRODUCTION

T HIS PAPER describes a new framework-the “allocated-
capacity” framework-for providing allocated-capacity

service in the Internet. The goal of the mechanism is to allocate
the bandwidth of the Internet to different users in a controlled
way during periods of congestion. The mechanism applies
equally to traditional applications based on transmission con-

trol protocol (TCP), such as file transfer, database access, or
Web servers, and new applications such as real-time video
and audio.

The current Internet assumes the “best-effort” service
model. In this model the network allocates bandwidth among
all of the instantaneous users as best it can and attempts to
serve all of them without making any explicit commitment
as to rate or any other service quality. When congestion
occurs, the sources of traffic are expected to detect this and
slow down, so that they achieve a collective sending rate
equal to the capacity of the congestion point. In contrast, the
mechanism offered by the “allocated-capacity” framework can
provide users with predictable expectations of Internet service.
In times of congestion all connections will slow down and

Manuscript received September 19, 1997; approved by IEEE/ACM
TRANSAC~ONS ON NETWORK~NC Editor S. Pink. This work was supported
in part by the Advanced Research Projects Agency of the Department of
Defense under Contract DABT63-94-C-0072, administrated by Ft. Huachuca,
and in part by a Graduate Fellowship from Sun Microsystems, Inc.

D. D. Clark is with the Laboratory for Computer Sciences, Massa-
chusetts Institute of Technology, Cambridge, MA 02139 USA (e-mail:
ddc@lcs.mit.edu).

W. Fang is with the Computer Science Department, Princeton University,
Princeton NJ 08540 USA (e-mail: wfang@cs.princeton.edu).

Publisher Item Identifier S 1063-6692(98)05707-O.

reduce their sending rates to the expected rates. Since different
users have different allocations, the network offers different
levels of best-effort service in times of congestion.

The mechanism in the framework allows users and providers
with a wide range of business and administrative goals to
make capacity allocation decisions. In the public Internet,
where commercial providers offer service for payment, the
feedback to customers is most often monetary. Our framework
allows the providers to charge different prices to users with
different service requirements and, thus, fund the deployment
of additional resources. In private networks like corporate or
military networks, administrative measures are often used to
allocate resources. Our framework provides a means to allocate
different resources to different users. Regardless of top-level
policy, the same mechanism can be deployed in the underlying
infrastructure to allocate bandwidth.

Additionally, the mechanism provides useful information to
providers about provisioning requirements. With our mech-
anism in place, service providers can more easily allocate
specific levels of assured capacity to customers and can easily
monitor their networks to detect when their customers’ needs
are not being met.

The rest of the paper is organized as follows. Section II
explains the framework in detail. The framework is simple,
scalable, and flexible to provide different kinds of service.
We also describe two complementary ways of controlling the
traffic: sender-based and receiver-based. Section III describes
two algorithms: a preferential dropping algorithm, which we
propose to be adopted in the center of the network, and a
tagging algorithm tailored for bulk-data TCP traffic. As an
example, we will use bulk-data TCP transfers with certain
throughput expectations to demonstrate the concepts in the
framework. Section IV presents results using the above algo-
rithms in simulated environments for bulk-data transfers. The
simulations show that the “allocated-capacity” framework is
effective in providing different levels of best-effort service
with high assurance over the existing Internet. The framework
also provides a simple way of identifying nonresponsive users
at aggregation points. Section V concludes our work.

A. Related Work

A number of approaches have been proposed for controlling
usage and explicit allocation of resources among users in time
of overload, both in the Internet and in other packet networks.

MacKie-Mason and Varian proposed dynamic allocation of

bandwidth at the packet granularity in their “smart-market”
scheme [191. In this scheme each packet carries a bid-a price

that the user is willing to pay for service. At each point of

1063-6692/98$10.00 0 1998 IEEE

CLARK AND FANG: BEST-EFFORT PACKET DELIVERY SERVICE 363

congestion, all of the offered packets are ranked by price and

a cutoff price is determined, based on current capacity, such
that only those packets with a bid above the cutoff are serviced.
The others are held in a queue, subjected to increased delay
and risk of being dropped. There are a number of drawbacks
to this scheme. One is that the linkage between the treatment
of each individual packet and the overall transfer rate is not
obvious. Also, the “smart market” operates only on a hop-by-
hop basis, and it is not obvious how this can be translated

into end-to-end performance. Finally, the computation needed
for clearing the bids and accounting in each router is likely

to be prohibitive.
Gupta et al. [151 proposed priority scheduling for allocation

of bandwidth among users. This scheme creates service classes
of different priorities to serve users with different needs.
Higher priority packets always depart the routers first. Thus,
the effect of priority queueing is to build up a queue of
lower priority packets, which will cause packets in this class
to be preferentially dropped due to queue overflow. This
scheme might be a useful building block for explicit service
discrimination, but it does not have a mechanism for balancing

the demands of the various classes.
Weighted fair queueing [3], [6] creates different queues

for different connections and ensures that each connection
will receive some share of the bandwidth. This mechanism
allocates bandwidth among all connections within a router,
but does not by itself address how many connections each
user has and how they interact. In addition, it is not clear that
this scheme is scalable in the center of the network where the
routers have a large of amount traffic connections aggregated.

Our approach is based on the idea of tagging packets as
in or out and treating them differently based on the tags.
This idea of tagging packets is not a new one. For example,
researchers at IBM [l] proposed tagging as part of a flow
control scheme. Frame relay has the concept of in/out packets
as does asynchronous transfer mode (ATM)-the cell loss
preference (CLP) bit. Those ideas were proposed in the context
of a specific reserved flow or virtual circuit from a source
to a destination. In [5] the idea was applied to a packet-
switched network where there is no implication that the
allocated capacity for any user is reserved along a particular
path. Profile meters tag packets based on contracted profiles
between Internet service providers (ISP’s) and customers. The
network preferentially drops out packets during periods of
congestion. As a consequence, the ISP’s can offer different
levels of service based on these profiles. Reference [4] also
developed a receiver-based scheme for controlling traffic.

Our framework incorporates the above tagging idea, and
extends it in the following three aspects: 1) instantiates the
framework by designing a set of tagging and dropping al-
gorithms; 2) provides a simple way to identify and isolate
nomesponsive connections; and 3) demonstrates the effective-
ness of the framework with simulation results.

in the router that favors traffic that is within those service al-
location profiles. The core of the idea is very simple-monitor
the traffic of each user as it enters the network and tag packets
as either in or out of their service allocation profiles, then
at each congested router, preferentially drop packets that are
tagged as being out.

Inside the network, at the routers, there is no separation
of traffic from different users into different flows or queues.
The packets of all users are aggregated into one queue, just as
they are today. Different users can have very different profiles,
which will result in different users having different quantities
of in packets in the service queue. A router can treat these
packets as a single commingled pool. This attribute of the

scheme makes it very easy to implement, in contrast to a
scheme like RSVP [21] or weighted fair queueing, in which

the packets must be explicitly classified at each node.
To implement this scheme, the routers must be augmented

to implement a dropping scheme’ (Section III-A offers the
specifics of a preferential dropping algorithm we developed).
Additionally, a new function must be implemented to tag the
traffic according to its service allocation profile. This algorithm
can be implemented as part of an existing network compo-
nent-host, access device, or router-or in a new component
created for the purpose. Conceptually, we will refer to it as a
distinct device called a “profile meter.”

B. Location of Projle Meters in the Network

Fig. 1 illustrates the “allocated-capacity” framework with a
sender-based control. All of the routers (G) in the network
have adopted a preferential dropping algorithm (D). In the
simple sender-based scheme the function that checks whether
traffic fits within a profile is implemented by tagging packets
at the edge of the network, e.g., the profile meter (M2) is on
the access link from Hl to ISPI. The complete story is more
complex. A profile describes an expectation of service obtained
by a customer from a provider. These relationships exist at
many points in the network, ranging from individual users
and their campus local area networks (LAN’s) to the peering
relationships between global ISP’s. Any such boundary may
be an appropriate place for a profile meter, e.g., M3-M6 in

Fig. 1.
Furthermore, the packet tagging associated with this service

allocation profile will, in the general case, be performed by
devices at both side of a boundary. One such device, located
on the sourcing traffic side of a network boundary, is a “policy
meter” (Ml, M3, and M5 in Fig. 1). This device chooses which
packets to tag, based on some administrative policy. Another
sort of device, the “checking meter,” sits on the arriving traffic
side of a network boundary, checks the incoming traffic, and
marks packets as out if the arriving traffic exceeds the assigned
profile, e.g., M2, M4, and M6. In this generalized model a

II. THE “ALLOCATED-CAPACITY” FRAMEWORK
’ There are other schemes being proposed to create preferential treatments of

packets, including a priority scheme in which packets tagged as in are put into

A. Overview
a separate queue from the out packets, or more elaborate versions. Separate
queues for different types of packets will likely cause packet reordering,

The general approach of this mechanism is to define a ser-
resulting in performance degradation in TCP or jitter in real-time traffic. In
this paper we only focus on using preferential dropping of packets and placing

vice allocation profile for each user and to design a mechanism both in and out packets in the same queue.

364 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 6, NO. 4, AUGUST 1998

Fig. 1. The “allocated-capacity” framework (sender-based). Host 1 (Hl) has a sender-based profile and is sending traffic to host 2 (H2) (dotted line).
The traffic traverses three ISP’s. The routers G in the figure are all augmented with preferential dropping algorithms D. There are profile meters M at
each interface between a customer and an ISP, or between two ISP’s. Ml is a profile meter inside a host, M2 is on the access link from Hl to ISPl,
and M3-M6 are profile meters on the boundaries of ISP’s.

packet will travel through the network, passing a series of

cascaded profile meters.
The first meter that the traffic encounters should provide

the highest degree of discrimination among the connections.
As the traffic merges and aggregates with other traffic in the
center of the network, the corresponding profile meters only
need to look at large aggregates. A profile meter integrated
into a host implementation of TCP and Internet protocol (IP),
for example, can serve to regulate the relative use of the
network by individual flows. In contrast, subsequent meters
at ISP boundaries serve to verify that there is a large enough
overall service contract in place at that point to carry all the
traffic tagged as in at the interior points.

C. A Spectrum of Services

In designing this framework we are serving two potentially

conflicting goals. First, we would like to implement a set
of simple services which are useful and easy to understand
and adopt; second, we do not want to embed the above
services into the mechanisms so that the framework cannot
adapt to new applications with new service requirements in
the future. The decoupling of the service allocation profiles at
the edge of the network from the differential dropping in the
center of the network allows this flexibility. To oversimplify,
the preferential dropping scheme adopted in routers in the
center of the network will not change over time. Since the
characteristics of a service is defined and captured by its
corresponding profile meter, it is only necessary to create the
profile meter at the edge of the network to adopt a new service.

The services provided by this framework are diverse. As a
simple example, it could be the equivalent of a dedicated link
of some specified bandwidth from a source to a destination.
Such a model is easy for users to understand. A more elaborate
model can be an aggregated commitment to a range of
destinations, or anywhere within an ISP, sometimes called
a private- virtual network. A virtual network is by nature
more difficult to offer with high assurance since offering
commitments to “anywhere within a virtual network” implies
that the ISP has provisioned its resources adequately to support
all users sending in traffic simultaneously to any destination.

Not all Internet traffic is continuous in its requirement for
bandwidth. In fact, most Internet traffic is very bursty. It may
thus be that a “virtual-link” service model is not what users
really want. It is possible to support bursty traffic by changing
the profile meter to implement this new sort of service. The
key issue is to ensure, in the center of the network, that there is
enough canacitv to carrv this burstv traffic and. thus. actuallv

meet the commitments implied by the outstanding profiles.
This requires a more sophisticated provisioning strategy than
the simple “add ‘em up” needed for constant bit-rate virtual
links. However, in the center of the existing Internet, especially
at the backbone routers of major ISP’s, there is a sufficiently
high degree of aggregation that the bursty nature of individual
traffic flows is no longer visible. This suggests that providing
bursty service allocation profiles to individual users will not
create a substantial provisioning issue in the center of the
network, while possibly adding significant value to the service
as perceived by the users.

A more sophisticated service allocation profile would be one
that attempts to provide a specified and predictable through-
put to a TCP stream. This is more complex than a profile
that emulates a fixed capacity link, since TCP hunts for

the correct operating rate by increasing and decreasing its
window size, which causes rate fluctuations to which the
profile must conform. The service allocation profile is easy
for a user to test by simply running a TCP-based application
and observing the throughput. This is an example of a “higher
level” profile, because it is less closely related to some existing
network components and more closely related to the users’
actual demands. In Section III we will describe algorithms to

implement such a profile.
In summary, three things must be considered when describ-

ing
.

.

.

a service allocation profile.

Traffic specijcations: What exactly is provided to the
customer (for example, 5 Mb/s average throughput)?
Geographic scope: To where is this service provided
(examples might be a specific destination, a group of
destinations, all nodes on the local provider, or “every-
where”)?
Probability of assurance: With what level of assurance
is the service provided (or, alternately, what level of
performance uncertainty can the user tolerate)?

These things are coupled; it is much easier to provide “a
guaranteed 1 Mb/s” to a specific destination than to anywhere
in the Internet.

D. Provisioning with Statistical Assurance

The statistical multiplexing nature of the Internet makes
efficient use of bandwidth and supports an increasing number
of users and new applications. However, it does lead to some
uncertainty as to how much of the bandwidth is available at
any instant. Our approach to allocating traffic is to follow this
nhilosoohv to the degree that the user can tolerate the uncer-

CLARK AND FANG: BEST-EFFORT PACKET DELIVERY SERVICE 365

tainty. In other words, we believe that a capacity allocation
scheme should provide a range of service assurance. At one
extreme, the user may demand an absolute service assurance,
even in the face of some network failures. Less demanding
users may wish to purchase a service allocation profile that
is “usually available” but may still fail with low probability.
The presumption is that a higher assurance service will cost
substantially more to implement.

We have called these statistically provisioned service alloca-
tion profiles “expected capacity” profiles. This term was picked
to suggest that the profiles do not describe a strict guarantee
but, rather, an expectation that the user can have about the
service he will receive during times of congestion. This sort
of service will somewhat resemble the Internet of today in
that users have some expectation of what network performance
that they will receive; the key change is that our mechanism
permits different users to have different expectations.

For traffic that requires a higher level of commitment, more
explicit actions must be taken. Those actions can be either
static, e.g., making a long-term commitment on physical links
to a user, or dynamic, e.g., an RSVP-like protocol to set up
temporary reservations. It should be noted that traffic requiring
this higher level of assurance can still be aggregated with
other similar traffic. It is not necessary to separate out each
individual flow to ensure that it receives its promised service.
For example, there could be two queues in the router, one for
traffic that has received a statistical assurance and one for this
higher, or “guaranteed,” assurance. Within each queue, in and
out tags would be used to distinguish the subset of the traffic
that is to receive the preferred treatment.

Fundamentally, statistical assurance is a matter of provi-
sioning. In our scenario an ISP can track the amount of traffic
tagged as in crossing various links over time, and provide
enough capacity to carry this subset of the traffic, even at times
of congestion. This is how the Internet is managed today, but
the addition of tags gives the ISP a better handle on how much
of the traffic at any instant is “valued” traffic and how much is

discretionary or opportunistic traffic for which a more relaxed
attitude can be tolerated.

E. Receiver-Controlled Scheme

The tagging scheme described above implements a model in
which the sender, by selecting one or another service allocation
profile, determines what service will govern each traffic flow.
However, in today’s Internet, the receiver of the traffic, not

the sender, is often more the appropriate entity to make
such decisions. We describe a mechanism that implements

receiver control of service, which is similar in approach and
complementary to the sender-controlled tagging scheme.

The receiver-based scheme in the “allocated-capacity”
framework is the dual of the sender-based scheme. It relies
on a newly proposed change to TCP called the explicit
congestion notification (ECN) bit [ll]. In ECN semantics,
congested routers will turn on the ECN bit in a packet instead

of dropping the packet. The TCP receiver copies the ECN
bit into the acknowledgment (ACK) packet, and the sender
TCP will gracefully slow down upon receiving an ack with
the ECN bit on.

In the receiver-based expected capacity scheme, routers will
not be modified; they will turn x the ECN bit in a packet when
there is congestion. A profile meter, installed at the receiver,
can check whether a stream of received packets is inside of the
profile. Each arriving packet will debit the receiver’s service
allocation profile. If there is enough profile to cover all arriving
packets, the meter will turn off the ECN bits in those packets
which had encountered congestion since the receiver is entitled
to receive at this rate. If the receiver’s profile is exceeded,
packets with their ECN bits m will be left unchanged at the
profile meter. If packets arrive at the TCP receiver with ECN
bits still ok, it means that the receiver has not contracted for
sufficient capacity to cover all of the packets that encountered
congestion, and the sender will be notified to slow down.

I) Difference Between Sender-Based Control and Re-
ceiver-Based Control: There are a number of interesting
asymmetries between the sender and the receiver versions
of this tag and profile scheme, which arise from the fact
that the data packets flow from the sender to the receiver. In
the sender scheme the packet first passes through the meter,
where it is tagged, and then through any point of congestion.
In contrast, in the receiver-controlled scheme the packet first
passes through any points of congestion, where it is tagged,
and then through the receiver’s meter. The receiver scheme,
since routers only set the ECN bit if congestion is actually
detected, can convey to the end point dynamic information
about the current congestion levels. In the sender scheme,
in contrast, profile meters must tag the packets as in or out
without knowing if congestion is actually present. Thus, we
could construct a service, based on the receiver scheme, to
bill the user for actual usage during congestion.

On the other hand, the receiver scheme is more indirect in its
ability to respond to congestion. Since in the sender scheme a
packet carries the explicit assertion of whether it is in or out of
profile, the treatment of the packet is evident when it reaches
a point of congestion. In the receiver scheme the data packet
itself carries no such profile indication, so, at the point of

congestion, the router must set the ECN bit, and still attempts
to forward the packet, trusting that the sender will correctly
adjust its transmission rate. Of course, if the profile meter at
the receiver’s side employs a dropping algorithm, which will

drop any packets that has exceeded the profile, the sender will
slow down if it is a properly behaved TCP.

Another difference between the two schemes is that in the
sender scheme, the sending application can set the in/out bit

selectively to control which packets are favored during the
congestion. In the receiver scheme all packets sent to the
receiver pass through and debit the profile meter before the
receiver host gets them. Thus, in order for the receiver host to
distinguish those packets that should receive preferred service,
it would be necessary for it to install some sort of packet filter
in the profile meter.

2) Combining Sender-Based and Receiver-Based Schemes:
The sender-based scheme can be combined with the receiver-
based scheme [4]. One extra bit in the packet header will
indicate whether this packet is a sender-pay packet or a
receiver-pay packet. The receiver-pay scheme is the dual of
the sender-pay scheme; for example, in the receiver-pay case

366 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 6, NO. 4, AUGUST 1998

: sender-based

Fig. 2. Simplified “allocated-capacity” framework. The simplified framework to illustrate the different levels of service provided for bulk-data TCP
transfers. Both sender-based and receiver-based are shown. The darkly shaded boxes, profile meter M, and dropper D are for sender-based control. The
lightly-shaded boxes, tagger T in the router and profile meter M at the receiver side, are for receiver-based control. G are all the routers in ISPI.
There are no cascaded-profile meters.

the routers turn on the ECN bit of a packet whenever such
a packet would have been dropped had it been an out packet
in the sender-pay case. For sender-pay packets, the routers
always know which packets can be preferentially dropped by
looking at the in/out bit, whereas for the receiver-pay packets,
the routers only mark the packets and rely on the end hosts to
back off. Therefore, there could potentially be theft-of-service
by malicious users in the receiver-pay scheme. In a related
work [2] addresses the robustness and security issues of a
framework in which the two schemes can be combined.

III. “ALLOCATED CAPACITY” FOR BULK-DATA TRANSFERS

It is important to realize that the dropping algorithm in the
routers, once adopted, is unlikely to change again over time;
however, the service allocation profiles and corresponding pro-
file meters will evolve as users have more sophisticated needs
for new applications. Therefore, we need to find a dropping
algorithm that will offer enough generality to cooperate with
many types of profile meters. In this section we propose a
preferential dropping algorithm to create discrimination in the
center of the network. Additionally, we present a tagging
algorithm tailored for bulk-data TCP transfers. For the sake
of simplicity, we assume a simplified network with only one
ISP between any two connecting hosts, as illustrated in Fig. 2.
There is no cascading of profile meters. The service allocation
profiles that we use are easy for the users to understand-they
can provide a specific average throughput to anywhere within
this network, with round trip times (RTT’s) ranging from
20 to 100 ms (which is roughly comparable to metropolitan
connections and cross-US connections, respectively). We will
call the expected throughput the target rate, or RT. Different
levels of service refer to the different target rates specified in
service allocation profiles. The profile meters are on the access
link from the host to its immediate ISP. The network is well
provisioned since the sum of all service allocation profiles sold
to customers does not exceed the link speed. We first concern
ourselves with the kind of assurance different TCP connec-
tions can achieve using the combined tagging and dropping

algorithms. We then explore both sender-based and receiver-
based schemes, and, finally, we study the results when traffic
from a nonresponsive source persistently congests the router.

A. TCP Rate Adjustment in the Current Internet

In today’s Internet the end-host transport-layer TCP has
congestion control and avoidance mechanisms which adjust
TCP’s sending rate in response to congestion. Additionally,

the router queue management algorithm drops packets as a
mechanism for congestion feedback. We take advantage of

both mechanisms to adjust TCP’s sending rate. We will discuss

them in turn.

The mechanisms used by TCP to deal with congestion are

based on [181. TCP has two modes of dealing with congestion.
The first mode, “fast recovery,” is triggered by the loss of

very few packets, typically one. In this mode the TCP cuts

its sending window size in half and, following a successful
retransmission, increases its window size by one packet each

RTT. Since the achieved transmission rate for any window

size is roughly proportional to that window size, cutting the
window size in half has the effect of reducing the achieved

sending rate by up to half. The second mode is called “slow

start,” and typically occurs when the retransmission timer goes

off. In the slow-start mode TCP first reduces its window

size to one, and then opens its window exponentially until
the window reaches its slow-start threshold, or ssthresh, after

which TCP opens up its window linearly. ssthresh reflects

what TCP perceives to be the optimal operating point and
is cut in half each time TCP detects a packet loss. In the

current implementations of TCP, when many packet losses

occur within one RTT, TCP cannot use fast recovery to recover
packets and has to rely on the retransmission timer. When

the retransmission timer goes off, TCP enters the slow-start

mode. This has a more drastic effect on the TCP performance.

First, the retransmission timer is often crude, measured in

a granularity as coarse as 500 ms, and TCP does not send
data during this period. Second, in slow start the sending

TCP sets its window size to one packet when it starts again,

also with a much reduced ssthresh. This essentially reduces

the sending rate to zero. Therefore, the rate adjustments
currently implemented by TCP are both imprecise and, on

occasion, drastic. Given this, there is a concern that TCP’s rate
adjustment mechanism cannot be used with enough precision

to achieve a specific overall throughput, especially if slow

start is triggered.

In the current Internet, routers deal with congestion by

dropping packets. Each time a packet is dropped, it causes a
rate adjustment in one of the sending TCP’s. Between drops,

all the TCP’s with data to send will increase their rate in an

attempt to fill the network links fully. So infrequent packet
drops, which might seem to be preferred mode of operation,

actually provide fewer opportunities to adjust the rates among

the various senders. As long as the packet drops trigger only

the fast-recovery behavior, rather than the slow-start behavior, I

CLARK AND FANG: BEST-EFFORT PACKET DELIVERY SERVICE 367

Iroc)

1

1

(4

rrop’lril

~~_~~~~~~~

rnmn~in max_in* _
avg_in

avg_total

(b)

Fig. 3. (a) RED and (b) RIO algorithms (figures not drawn to scale).

TCP stays in a phase with quantifiable rate adjustments and
is much more controllable.

B. Differential Dropping in the Routers: RIO

sending rate. Therefore, the dropping probability is a fraction

of p,,, and is usually small. When the average queue size is
above maxth, the router drops every arriving packet, hoping

to maintain a short queue size.

RIO stands for random early drop (RED) routers with
in/out bit. RED routers [lo] keep the overall throughput high
while maintaining a small average queue length, and tolerate
transient congestion. When the average queue has exceeded a
certain threshold, RED routers drop packets at random so that
TCP connections back off at different times. This avoids the
global synchronization effect of all connections and maintains
high throughput in the routers. RIO retains all these attractive
attributes. In addition, it discriminates against out packets in
times of congestion. At a high level, RIO uses twin RED
algorithms for dropping packets, one for ins and one for

outs. By choosing the parameters for respective algorithms
differently, RIO is able to preferentially drop out packets. We
will briefly describe the RED algorithm before presenting RIO.

2) Twin Algorithms in RIO: RIO uses the same mechanism

as in RED but is configured with two sets of parameters, one
for in packets and one for out packets. Upon each packet

arrival at the router, the router checks whether the packet
is tagged as in or out. If it is an in packet, the router
calculates avgin, the average queue for the in packets; if it

is an out packet, the router calculates avg.total, the average

total queue size for all (both in and out) arriving packets.
The probability of dropping an in packet depends on avgin,

and the probability of dropping an out packet depends on
avg-total.

1) RED Algorithm: An RED router operates as follows. It
computes the average queue size and when the average queue
size exceeds a certain threshold, it drops each arriving packet
with a certain probability, where the exact probability is a
function of the average queue size. The average queue size
is calculated using a low-pass filter from instantaneous queue
size, which allows transient bursts in the router. Persistent
congestion in the router is reflected by a high average queue
size and a high dropping probability. The resulting high
dropping probability will discard packets early and, thus,
detect and control congestion.

As illustrated in Fig. 3, there are three parameters for
each of the twin algorithms. The three parameters min -in,

max -in, and P,,,ax _in define the normal operation [0, min in),
congestion avoidance [min _in, max -in), and congestion con-

trol [max in, co) phases for in packets. Similarly, min -out,
max -out, and P,,, _out defines the corresponding phases for
out packets.

A RED router is configured with the following parameters:
minth, maxth, and P,,. It works as illustrated in the leftmost
figure in Fig. 3-the z-axis is avg, the average queue size,
which is calculated using a low-pass filter of instantaneous
queue size upon each packet arrival. The y-axis is the proba-
bility of dropping an arriving packet. There are three phases
in RED, defined by the average queue size in the range of [0,
m&h), [minth, ma&h), and [maxth, co), respectively. The
three phases are normal operation, congestion avoidance, and
congestion control, respectively. During the normal operation

phase, when the average queue size is below minth, the router
does not drop any packets. When the average queue size is
between the two thresholds, the router is operating in the
congestion avoidance phase, and each packet drop serves the
purpose of notifying the end-host transport layer to reduce its

The discrimination against out packets in RIO is created by

carefully choosing the parameters (min -in, max -in, P,,, -in),
and (min -out, max -out, Pmax_out). As illustrated in two
right figures in Fig. 3, a RIO router is more aggressive in

dropping out packets on three counts. First, it drops out packets
much earlier than it drops in packets; this is done by choosing

min -out smaller than min -in. Second, in the congestion
avoidance phase it drops out packets with a higher probability

by setting P,,, _out higher than Pmax_in. Third, it goes into
congestion control phase for the out packets much earlier

than for the in packets by choosing max _out much smaller

than max in. In essence, RIO drops out packets first when it
detects incipient congestion, and drops all out packets if the

congestion persists. Only as a last resort, occurring when the
router is flooded with in packets, it drops in packets in the hope

of controlling congestion. In a well-provisioned network this

should never happen. When a router is consistently operating
in a congestion control phase by dropping in packets, this
is a clear indication that the network is underprovisioned.

Appendix A contains the pseudocode for RIO algorithm.

The choice of using avg-total, the total average queue size
to determine the probability of dropping an out packet, is

368 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 6, NO. 4, AUGUST 1998

Initially:

Win-length = a constant;
Avg_rate
Tfront

= connection’s target rate, Ra
= 0;

Upon each packet arrival, TSW updates its state variables as follows:

Bytes_in_TSW = Avg_rate * Win-length;
New-bytes
Avg_rate

= Bytes_in_TSW +pkt_size;

Tfront
= New-bytes / (now - T&-mat + Win-length);

= now;

Whereas, now is the time of current packet arrival; andpkt_size is the packet size of the arriving packet.

Fig. 4. TSW algorithm.

subtle. Unlike in packets, which the network can properly
provision for, the out packets represent opportunistic traffic,
and there is no valid indication of what amount of out packets
is proper. If we had used the average out packet queue to
control the dropping of out packets, this would not cover
the case where the total queue is growing due to arriving in
packets. We could have used avgin, the average queue for the
in packets, to see how much “free space” the routers have for
out packets, i.e., drop fewer out packets when avg-in is small
and drop more out packets when avgin is large. But this only
works when the number of in packets in the queue is large,
so the routers have good control on the number of out packets
and total queue length. By using the avgtotal, total average
queue size, routers can maintain short queue length and high
throughput no matter what kind of traffic mix they have. It is
conceivable that one could achieve a more responsive control
of out packets by changing the dropping parameters to depend
on both the average in queue size avgin and the average total
queue size avg-total, but we have not explored this idea.

C. Profile Meters for Bulk-Data Transfers: TSW Tagger

The profile meter that we designed for bulk-data transfers
is called the time-sliding window (TSW) tagger. The TSW
tagger has two distinct parts-a rate estimator and a tagging
algorithm. TSW refers to the rate estimator algorithm. TSW
provides a smooth estimate of the TCP sending rate2 over a
period of time. With the estimated rate avgrate, the tagging
algorithm can tag packets as out packets once the traffic
exceeds a certain threshold.

A rate estimator is used to smooth out the burstiness of
TCP traffic as well as to be sensitive to instantaneous sending
rates. TSW estimates the sending rate upon each packet arrival

and decays, or forgets, the past history over time.3 The design
of TSW is also extremely simple. TSW maintains three state
variables-Win-length, which is measured in units of time,
Avg_rate, the rate estimate upon each packet arrival, and
T-front, which is the time of last packet arrival. TSW is used
to estimate the rate upon each packet arrival; so state variables
Avg_rate and T-front are updated each time a packet arrives,

‘The burstiness of TCP traffic is a well-known phenomenon. Articulated
in [20], it is caused by the fact that TCP paces out packets using its window
algorithm and possible “ACK compression” in two-way traffic.

3Though a low-pass filter of instantaneous sending rate (packet size divided
by interpacket arrival time) seems to be an obvious choice for the rate
estimator, it suffers a flaw: it decays the sending rate over packet arrivals, not
over time. Consequently, a fast TCP is decaying its past history faster than
a slow TCP, and when TCP is not sending, the past history is not decayed.
TSW is designed to avoid this.

but Win-length is preconfigured when the profile meter is
installed.

The TSW rate estimator works as shown in Fig. 4.
We do not include a proof of the decaying function embed-

ded in TSW. Intuitively, TSW remembers Win-length worth
of past history, and decays the estimated sending rate by a
factor of e over Win-length period of time.

In terms of tagging algorithm there are two different ap-
proaches. Ideally, a profile meter can keep a TCP connection
oscillating between 0.66 RT, the target rate, and 1.33 RT so
that, on average, the connection can achieve RT. The first
approach is that the meter could remember a relatively long
past history-in the order of a TCP sawtooth from 0.66 to 1.33
RT-and tag packets as out with P = (avgrate - RT)/RT,
when the avg_rate exceeds RT. All packets are tagged as in
when the avg_rate is below RT. The second approach is for
the profile meter to remember a relatively short history-on
the order of an RTT-and look for the peak of a TCP
sawtooth when TCP exceeds 1.33 RT, at which point, the

tagger starts tagging packets as out. When the profile meters
are next to the host, where TCP sawtooths are quite visible,
the second approach is more effective. On the other hand, the
first approach is more general and can be applied not only to
individual TCP connections but also to aggregated TCP traffic
or other type of traffic. In our simulations we use the second
approach.

D. DifJiculties in Designing RIO-TSW

Our service allocation profile “certain target throughput to
anywhere (within ISP),” albeit simple, is in fact difficult to
accomplish if the profile meters are on the access link from
the hosts to their ISP’s. There are two reasons for this. First
of all, with the TCP algorithm for opening up windows, there
is a strong network bias in favor of connections with short
RTT’s. In the fast-recovery phase TCP increases cwnd by
one packet4 each RTT. Let T denote RTT. Each RTT, TCP
increases its sending rate by l/r packets/s, or it increases its
sending rate by l/(r)’ each second. For example, when a

connection has an RTT five times that of another connection,
the increase in sending rate for this connection is l/25 of the
other connection. Therefore, when both connections receive
drops simultaneously, it takes the long RTT connection much
longer to recover to its sending rate before the drop than
the short one. During this period of recovery, the short RTT

4Real implementation of TC increases window measured in bytes, instead
of packets; we use packets for simplicity in explanation.

CLARK AND FANG: BEST-EFFORT PACKET DELIVERY SERVICE

connection has a higher average sending rate than the long
RTT connection. This explains why a service allocation profile
with specific source-destination pair is comparatively easier
to implement because its RTT is known.5 As we discussed in
Section III-A, the profile meters are on the access link from the
host to the ISP, and do not know the RTT of TCP connections
at the host. Therefore, the profile meter has to assume some
fixed RTT value and use it for all possible RTT’s, as the
host TCP is promised to send to “anywhere” with certain rate.
Consequently, when the host is sending to a closer destination,
it can usually achieve better throughput than the target rate RT,
whereas it will fall slightly under expectations for longer RTT
connections. Our goal is to explore what kind of assurance we
can have for what range of RTT’s. In Section IV-B we will
demonstrate this network bias against long RTT connections
with simulations, and explain how the “allocated-capacity”
framework can alleviate such a bias.

The second challenge is to avoid TCP’s retransmission
timeouts. As we have discussed earlier, the fast-recovery phase
of TCP provides much more controllable and quantitative
adjustments of rates than the slow-start phase following a
retransmission timeout. In the current version of TCP, fast-
recovery phase is maintained so long as TCP only suffers one
or two packet drops within one RTT. Once a TCP connection
is sending above its target rate RT, the profile meter starts to

tag packets as out packets. If a cluster of packets are tagged
as out, the likelihood of them getting dropped together is
also high. This will drive TCP into a slow-start phase and
create undesirable consequences. Our solution is to introduce
a probabilistic function while tagging packets as out. The
probabilistic function will space out packets that are tagged
as out, reducing the probability of going into slow starts.

Both of the above difficulties are consequences of the fact
that the profile meter is separated from the host’s TCP and,
hence, has no knowledge of RTT or any other internal state
information of the TCP. If, instead, the profile meter could be
integrated with the host’s TCP code, then we can precisely
avoid the above difficulties6 When this is not feasible, our
framework can provide better assurances by keeping the TCP’s

strictly in the fast-recovery phase. For example, in the receiver-
based scheme, there will be no packet drops. Instead of
inferring from a packet drop that congestion had occurred,
the sending TCP can receive explicit congestion notification,
reduce its window size appropriately, and operate in the fast-
recovery phase most of the time. A new version of TCP [TCP
with selective ACK (TCP-SACK)] has similar properties and
can work well in our framework.

IV. SIMULATIONS RESULTS

A. Simulation Setup

We use the 7~s [17] network simulator from Lawrence

Berkeley National Laboratory (LBNL) for our simulations.

50f course, the actual R’M depends on the queueing delay caused by
congestion during the transmission, but ISP’s usually have a crude estimate.

6This profile meter, of course, should be augmented with a “checking”
profile meter on the access link to make sure that the host isn’t cheating.
Section IV-B explores this topic.

369

Fig. 5. Ten-connection case

TABLE I
COMPARISON OF RED AND RIO-TSW FOR TEN-CONNECTION SCENARIO. LINK

BW = 33 Mb/s, PARAMETERS FOR RED (10, 30, 0.02), PARAMETERS FOR
RIO (40, 70, 0.02) FOR ins AND (10, 30, 0.2) FOR outs, USED TCP-RENO

Conn RTT RED routers with RIO-
(ms) (Mhps) RT (Mhps) TSW (Mbps)

0 20 7.04873 1 2.27289

1 I 20 1 6.22214 I5 1 5.7619

2 40 2.83662 1 1.28011

3 40 2.28316 5 5.26757

4 50 2.62307 1 1.21957

5 50 2.81556 5 5.18823

6 70 1.61073 1 1.34831
7 70 I .57837 5 4.12794

8 100 164488 1 0.996326

9 100 1.85132 15 1 4.12563

total 30.51458 I 3 1.588476

We use a simple topology with ten hosts connecting to their
respective destinations via one common ISP. Fig. 5 shows the
topology. The ten connections, each with a profile meter, share
a common bottleneck of 33 Mb/s, whereas the total contracted
profiles are 30 Mb/s. The connections have different RTT’s,
ranging from 20 to 100 ms. They are grouped into five pairs.
Each pair has a connection with target rate RT of 1 Mb/s, and
another connection with RT of 5 Mb/s. We experiment with
both sender-based and receiver-based schemes, with different
versions of TCP, and with how to deal with nonresponsive
flows. All TCP connections run for 20 s unless otherwise
noted. Due to limited space, we abbreviate results as the
average throughput achieved by the TCP receiver after TCP
has reached stable state, and present them in tables.

B. Comparison with TCP in Today’s Internet
(Sender-Based, TCP-Reno)

Table I compares the throughput of the ten connections
in the current Internet environment and in the “allocated-
capacity” framework. The RTT’s of ten connections, ranging
from 20 to 100 ms, are listed in column 2. Column 3 lists the
throughput that these ten TCP (TCP-Reno) connections can
achieve in today’s Internet from a particular simulation run.
The network bias against long RTT connections is evident.
Graphs of TCP window oscillations (not shown) are usually
drastic and unpredictable. As a result, the throughput that TCP-

370 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 6, NO. 4, AUGUST 1998

Reno can achieve is usually unpredictable, e.g., connections
2 and 3 have the same RTT but differ significantly in their
throughput (24%). The last two columns list relevant infor-
mation for the “allocated-capacity” framework: column 4 lists
the target rates, or RT, for the ten connections, and column 5
is the throughput achieved by the TCP after having adopted
a profile meter. The total link throughputs in both cases are
comparable: 30.51 versus 31.6 Mb/s, or 92.5 versus 96% link
usage.

In comparing the two cases we observe the following-all
other things being equal, the network bandwidth in the current
Internet is distributed according to the RTT’s of the connection
and is strongly in favor of connections with short RTT’s. The
throughput achieved by TCP is subject to circumstances of
router congestion and can be very unpredictable, especially
when slow-start phase is triggered. In contrast, the “allocated-
capacity” framework can allocate network capacity according
to the service allocation profiles for which the users have

TABLE II
RECEIVER-BASED, TCP-RENO WITH ECN SEMANTICS, BW = 33 Mb/s,

RED ROUTER WITH PARAMETERS (15, 40, 0.02), EXCEPT IT DOES
NOT DROP PACKETS, BUT ONLY SETS ECN BITS WHEN CONGESTED

Conn RTT RED routers with RIO-
(ms) (Mhps) R, (Mhps) TSW (Mbps)

0 20 6.18994 I 2.71758

1 I 20 1 5.69154 I5 1 5.38844

2 40 3.30375 1 1.65922
3 40 4.06525 5 5.02699

4 50 2.67894 1 1.3496

5 50 3.19256 5 4.83 154

contracted. For TCP’s with the same service allocation profile,
e.g., connections 1 and 9, the disadvantage that long RTT

To put in another way, if the profile is to “anywhere,” then

connections have is still visible, but it has been significantly
there is a certain range of “anywhere” that is feasible with

mitigated (though not corrected). Most importantly, now the
high assurance by our designed service allocation profile.

system can provide quite different expected capacities to
different connections with reasonable assurance. D. A Step into the Future: Working with TCP-SACK

and Profile Meters in the Host

C. Receiver-Based (TCP-Reno with ECN)

In the same format, Table II lists the results from the
receiver-based scheme. The configuration of the system is
comparable to that of the sender-based scheme. The advantage
that short RTT connections have in today’s network is pro-
nounced in column 3. Results in column 5-the throughput
achieved by the ten connections, respectively-lead us to
similar conclusions that the “allocated-capacity” framework
can allocate bandwidth according to the target rates RT in
the times of congestion, and there is a strong discrimination
against connections with small RT. The overall performance
is slightly better than that of the sender-based scheme: 32.88
versus 30.51 Mb/s (Table I). In the receiver-based scheme,

since there are no packet drops, there are no retransmits,
and TCP operates mostly in the fast-recovery phase, adjusting
its windows gracefully. This attribute also makes the system
more predictable in allocating bandwidth. In the receiver-
based schemes the link usage is high: 32.88 Mb/s (99.6%
link utilization) for using RED routers, and 32 Mb/s (97%)
for using combined RIO routers and profile meters. The ECN
scheme provides an elegant way of controlling the sending
rate of TCP.

It is important to realize that in both sender-based and
receiver-based schemes, network bias against long RTT con-
nections is not totally eliminated because the profile meters
are on the access path. The profile meters, not knowing the
instantaneous RTT of TCP, have to use a presumed RTT
to calculate its Winlength variable, discriminating against
connections with longer RTT’s than the presumed value.
Conversely, it gives an advantage to connections with shorter
RTT’s than the presumed value. Such bias limits the chances
of predictability for long RTT connections in our framework.

TCP-SACK [13] has very different semantics in its ACK
packets. The sending TCP has precise information on the
received or lost packets and can make correct decisions
about retransmissions and window adjustments. It can re-
cover multiple packet loss in a window and remain in the
fast-recovery phase. Similar to the receiver-based scheme,

when the host is using TCP-SACK, the “allocated-capacity”
framework can provide different levels of services with high
assurance, since no unexpected slow starts can cause large
variations in throughput.

The limitation in our TSW profile meter is that it does
not know the instantaneous RTT of the TCP connections and
therefore has to presume one. This limitation can be eliminated
if the profile meter is implemented in TCP itself, which has

a good estimate of the instantaneous RTT. In this case an
additional “checking” profile meter will have to be installed at
the connecting ISP to ensure that the host is not cheating by
sending more in packets than it is promised. The corresponding
“checking meter” on the access link from the host to ISP
can be designed simply. Inside the host the “policy meter,”
knowing the RTT, can insure differential best-effort service to
connections with a much longer range of RTT’s.

Table III lists the results of simulation of the above two
cases. The results are presented in one table to save space.
The left half of the table shows the results of “allocated-
capacity” framework versus using RED routers only when
the host TCP has been upgraded to TCP-SACK. Though
the achieved throughput is only slightly better than those
in the TCP-Reno case, the predictability is much higher. In
other words, the results with TCP-SACK are much more
consistent and with small variation. The TCP window graphs
in simulations show perfect sawtooth behaviors, and no slow
starts (Appendix B includes two TCP window graphs for

CLARK AND FANG: BEST-EFFORT PACKET DELIVERY SERVICE 371

TABLE III
WFH TCP-SACK TO RECOVER MULTIPLE PACKET LOSSES. PARAMETERS FOR RED ARE (10, 30, 0.02)
AND PAMMETERS FOR RIO ARE (40, 70, 0.02) AND (10, 30, 0.5). Bw = 33 Mb/s, USED TCP-SACK

TCP-Reno and TCP-SACK, respectively). The right half of
the table lists the results from using a “policy meter” inside
the host, using the TCP’s estimate of RTT’s to change the
Win-length variable dynamically. We deliberately make the
range of RTT’s bigger to make our point: the RTT’s are from

16 to 150 ms, approximating communications within a city
and across continental U.S., respectively. TCP in the hosts

(TCP-SACK) tag the outgoing packets by using the same TSW
algorithm that we mentioned before. For comparison, column
8 lists throughput of TCP-SACK for this range of RTT’s when
the profile meters are outside the host, therefore not knowing
the respective RTT’s. Results in column 10 are both better and
more predictable, as we had expected.

E. Dealing with Nonresponsive Connections

Nonresponsive connections are those connections that do
not have any congestion avoidance mechanisms and do not
slow down when their packets are dropped at the routers.
In the current Internet, in the presence of nonresponsive
connections, TCP-in fact, any transport-layer protocol that
implements congestion avoidance mechanisms-is at a dis-
advantage. While TCP backs off upon detecting congestion,
nonresponsive connections will get their packets through while
continuing to cause congestion. The currently proposed ways
of dealing with nonresponsive connections includes using a
fair-queueing mechanism to isolate different connections from
each other, and using some kind of “penalty box” to identify
and isolate nonresponsive connections, as recently proposed

by U41.
The “allocated-capacity” framework provides simple mech-

anisms to shield users as well as ISP’s from nonresponsive
sources in two ways. First, when a user has a service allocation

profile, the in packets he sends are far less likely to be
dropped in times of congestion, which implicitly shields him
from the out packets. Second, when a disproportional number
of out packets being dropped are from the same source,
the router can take that as an accurate indication that this
source is nonresponsive. In addition, instead of examining
the history of all dropped packets, as proposed in [14], to

TABLE IV
TEN-CONNECTION CASE WITH NONRESPONSIVE CONNECTION (CBR).

BW = 33 Mb/s, CBR IS SENDING AT 6 Mb/s, RIO PARAMETERS: (40,
70, 0.02) FOR ins AND (10, 30, OS) FOR mm. USED TCP-SACK

identify nonresponsive connections, in the “allocated-capacity”
framework, the routers only need to look at the history of
out packet drops, in which nonresponsive connections are
overrepresented.

In simulation we use a constant-bit-rate (CBR) source to
model nonresponsive sources. We add a CBR connection to the

above scenario, with a sending rate of 6 Mb/s, or roughly 20%
of the total bandwidth. Table IV lists the throughputs in both
the current Internet and the “allocated-capacity” framework,
with the hosts using TCP-SACK.

In today’s Internet this nonresponsive connection will inflict
consistent congestion in the router, causing all responsive TCP
connections to back off. Column 3 illustrates this effect-the
CBR gets almost all of its packets through at the expense of the
TCP’s performance. Connections O-9 all suffer performance
loss, compared to column 3 in Table III, where the CBR is

absent. With the “allocated-capacity” framework, connections
with service allocation profiles are protected from the CBR:

the link bandwidth is allocated according to the contracted
service allocation profile while packets from CBR are severely
dropped. The CBR connection receives 2.61 Mb/s or 43.5%

372 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 6, NO. 4, AUGUST 1998

of its 6-Mb/s sending rate in our framework, versus 5.85 or
97% of its sending rate in today’s Internet.

F. Extensive Simulations and Future Work

We have done extensive simulations on both sender-based
and receiver-based in one-way and two-way traffic. We have
also simulated scenarios where there is a mix of bursty traffic
and bulk-data transfer traffic, and cascading traffic profiles.
The result of the simulations can be found in [8]. It should
be noted that the case we presented-“average throughput
to everywhere”-is a harder case than “average throughput
for a source destination pair,” so that the “allocated-capacity”
framework can provide for a simpler service allocation profile
with high assurance. Our future work includes implementing
and testing our algorithms in a real testbed. From simulations
alone, we conclude that with the “allocated-capacity” frame-
work, TCP’s, especially newer version of TCP’s, can achieve
different throughput with high assurance.

V. CONCLUSIONS

Key to the success of the Internet is its high degree of traffic
aggregation among a large number of users, each of whom

has a very low duty cycle. Because of the very high degree
of statistical sharing, the Internet makes no commitment about
the capacity that any user will actually receive. It does not
make separate capacity commitments to each user.

We conclude that while the mechanisms in the Internet
seem to work today, a valuable service enhancement would
be a means to distinguish and separately serve users with very
different transfer objects, so that each could be better satisfied.
This paper suggests that instead of allocating capacity to
users by explicit reservations, we should take a much simpler
step-using service allocation profiles to separate demands
into those within the profiles (ins) and those outside the
profiles (outs), and dealing with the delivery of in packets
as a matter of provisioning. We argue that the users not
only want differential services but also higher predictability
than what the current Internet can provide. The proposed
“allocated-capacity” framework provides mechanisms for al-
locating different levels of services with high predictability.
Since the service allocation profiles represent how resources
are allocated when they are in demand, they are a rational

basis for cost allocation. With the current Internet facing the
imminent “tragedy of the commons,” a basis for cost allocation
can alleviate congestion, utilize the existing resources more
efficiently, and fund further growth of Internet infrastructure.

The mechanism proposed here, which is the discrimination
between packets marked as in and out for congestion pushback
at times of overload, represents an example of the separation of
mechanism and policy. It is capable of implementing a wide

range of policies for allocation of capacity among users. It
allows providers to design widely different service and pricing
models, without having to build these models into all of the
packet switches and routers of the network. The mechanisms
that must be agreed upon and implemented globally are the
format of the control flags in packets and the differential
treatments of out packets in the system. In contrast, the service

For each packet arrival
if it is an In packet

calculate the average In queue size avg_in;
calculate the average queue size avg_total;

If it is an In packet
ifmin_in < avg_in c max_in

calculate probability Pin;
with probability Pin, drop this packet;

else if max_in c avg_in
drop this packet.

if this is an Out packet
if min_out cavg_total < max_out

calculate probability Pout;
with probability Pout, drop this packet;

else ifmax_out <avg_total
drop this packet.

Fig. 6. RIO algorithm.

Win Size

n cwnd

- ssthresh

&&

I - ’ - ’ /!! &. 1
5 IO 15

time

(a)

Win Size

100

60

40

H cwnd
- ssthresh

5 10 15

time

(b)

Fig. 7. Win size. (a) Congestion window 9 (Reno_IOflows) and (b)
congestion window 9 (Sack_IOflows).

allocation profiles will change and adapt to needs of future
applications and business models of ISP’s, and will only affect

the edge of the network. This design thus pushes most of the
complexity to the edge of the network, making it scalable
and flexible.

CLARK AND FANG: BEST-EFFORT PACKET DELIVERY SERVICE

APPENDIX A

RIO ALGORITHM

The RIO algorithm is shown in Fig. 6.

APPENDIX B
CONGESTION WINDOW OSCILLATIONS FOR TCP-RENO AND

TCP-SACK IN “ALLOCATED-CAPACITY” FRAMEWORK

Fig. 7(a) and (b) shows that the TCP congestion window
cwnd changes over time for connection #9 (RTT = 100
ms). The connection uses TCP-Reno in Fig. 7(a) and uses
TCP-SACK in Fig. 7(b). TCP-SACK can recover multiple
drops gracefully and keep the window oscillating in a perfect
sawtooth fashion, whereas TCP-Reno’s window swings are
more drastic. See Fig. 7.

ACKNOWLEDGMENT

The authors would like to thank J. Wroclawski, P. Zayas,
and R. Cheng for their valuable input and feedback during
the course of this work. W. Fang would especially like to
thank members of the Advanced Network Architecture Group
at MIT for many insightful discussions. This material does not
reflect the position or policy of the U.S. Government, and no
official endorsement should be inferred.

111

VI

[31

I41

151

161

171

181

191

REFERENCES

K. Bala, I. Cidon, and K. Schraby, “Congestion control for high-speed
packet switched networks,” in Proc. INFOCOM’90, San Francisco, CA,
1990, pp. 520-526.
R. Cheng, “Receiver and sender payment of differential services in the
Internet,” Massachussets Inst. Technol., Cambridge, Tech. Rep., 1998,
to be published.
D. Clark, S. Shenker, and L. Zhang, “Supporting real-time applications
in an integrated services packet network: Architecture and mechanism,”
in Proc. ACM SIGCOMM‘92 Baltimore, MD, 1992, pp. 14-26.
D. Clark, “Combining sender and receiver payment schemes in the
Internet,” in Interconnection and the Internet: Selected Papersfrom 1996
Telecom Policy Research Cof, G. L. Rosston and D. Waterman, Eds.
Mahwah, NJ: Elrbaum, 1996, pp. 95-112.

“Internet cost allocation and pricing,” in Internet Economics, L.
Gight and J. Bailey, Eds. Cambridge, MA: MIT Press, 1997, pp.
215-253.
A. Demers, S. Keshave, and S. Shenker, “Analysis and simulations of
a fair queueing algorithm,” in Proc. ACM SIGCOMM’89, Austin, TX,
1989, pp. 1-12.
K. Fall and S. Floyd, “Simulation-based comparisons of Tahoe, Reno,
and SACK TCP,” Comput. Commun. Rev., vol. 26, no. 3, pp. 5-21,
July 1996.
W. Fang. “Simulation results of bulk-data transfer in the ‘expected ca-
pacity’ framework,” Princeton Univ., Princeton, NJ, Tech. Rep. [Online].
Available FTP: mercury.lcs.mit.edu Directory: /pub/wfang
S. Floyd and V. Jacobson, “On traffic phase effects in packet-switched
routers,” Internetworking: Res. Exp., vol. 3, no. 3, pp. 115-156, Sept.
lYY2.

1101 -, “Random early detection gateways for congestion avoidance,”
IEEE/ACM Trans. Networking, vol. 3, pp. 397413, Aug. 1993.

1111 S. Flovd. “TCP and exnlicit congestion notification,” Comput. Commun. . 1

Rev., ;ol. 24, no. 5, pp. 1&23:0ct. 1994.
Cl21 - (Oct. 1996). “Ns simulator tests for random early detection

(RED) gateways.” [Online]. Available: http://www-nrg.ee.lbl.gov/ns

1131

[I41

1151

tt61

1201

1211

313

-. (Mar. 1996). “Issues of TCP with SACK,” Lawrence Berke-
ley Nat. Lab., Tech. Rep. [Online]. Avalable FTP: ftp://ftp.ee.lbl.gov
Directory: /papers/issues.sa.ps.Z
S. Floyd and K. Fall, “Router mechanisms to support end-to-end conges-
tion control,” [Online]. Available www: http://www-nrg.ee.lbl.gov/nrg-
papers.html
A. Gupta, D. Stahl, and A. Whinston, “Priority pricing of integrated
services networks,” in Internet Economics, L. McKnight and J. Bailey,
Eds. Cambridge, MA: MIT Press, 1997, pp. 253-279.
J. Hoe, “Improving the star-up behaviors of a congestion control
scheme for TCP.” in Proc. ACM SZGCOMM‘96, Stanford, CA, 1996,
pp. 270-280.
Ns [Online]. Available www: http://www-nrg.ee.lbl.gov/nsl
V. Jacobson, “Congestion avoidance and control,” in Proc. ACM SIG-
COMM‘88. Stanford. CA. 1988, PP. 314-329.
J. Ma&e-Mason and H. Varian, “Economic FAQ’s about the Internet,”
in Internet Economics, L. McKnight and J. Bailey, Eds. Cambridge,
MA: MIT Press, pp. 27-63.
L. Zhang, S. Shenker, and D. Clark, “Observations on the dynamics of
a congestion control algorithm: The effects of two-way traffic,” in Proc.
ACM SIGCOMM‘91, Zurich, Switzerland, Sept. 1991, pp. 133-148.
L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala, “RSVP: A
new resource Reservation protocol,” IEEE Network, vol. 7, pp. 8-18,
Sept. 1993.

David D. Clark (F’98) received the B.S.E.E. de-
gree from Swarthmore College, Swarthmore, PA,
in 1966, and the Ph.D. degree from Massachusetts
Institute of Technology, Cambridge, in 1973.

Since 1973 he has been with the Laboratory
for Computer Science, Massachusetts Institute of
Technology, Cambridge, where he is currently a
Senior Research Scientist in charge of the Advanced
Network Architecture Group. After receiving his
Ph.D., he worked on the early stages of the ARPAnet
and on the development of token ring local area

network technology. Since the mid-1970’s he has been involved in the
development of the Internet-from 1981 to 1989 he acted as Chief Protocol
Architect in this development, and he chaired the Internet Activities Board.
His current research area is protocols and architectures for very large and
very high-speed networks. Recent activities include extensions to the Internet
to support real-time traffic, explicit allocation of service, pricing, and new
network technologies. He was a major author of two studies by the Computer
Science and Telecommunications Board of the National Research Council on
information infrastructure.

Dr. Clark is a member of the Association for Computing Machinery (ACM)
and the National Academy of Engineering. He is Chairman of the Computer
Science and Telecommunications Board of the National Research Council.
He received the ACM SIGCOMM Award, the IEEE Award in International
Communications, and the IEEE Hamming Award for his work on the Internet.

Wenjia Fang was born in Beijing, China. She
received the B.S. degree in computer science and
engineering from the University of Pennsylvania,
Philadelphia, in 1994, and is currently working
toward the Ph.D. degree in computer science at
Princeton University, Princeton, NJ. She has done
research at Bell Laboratories, NEC Laboratories,
and Sun Microsystems, and she attended TsingHua
University prior to coming to the United States.

She is currently a Visiting Scholar working on
network architecture issues with the Advanced Net-

work Architecture Group, Laboratory for Computer Science, Massachussets
Institute of Technology, Cambridge.

