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Abstract- This paper presents the “allocated-capacity” 
framework for providing different levels of best-effort 
service in times of network congestion. The “allocated- 
capacity” framework-extensions to the Internet protocols and 
algorithms-can allocate bandwidth to different users in a 
controlled and predictable way during network congestion. The 
framework supports two complementary ways of controlling 
the bandwidth allocation: sender-based and receiver-based. In 
today’s heterogeneous and commercial Internet the framework 
can serve as a basis for charging for usage and for more efficiently 
utilizing the network resources. We focus on algorithms for 
essential components of the framework: a differential dropping 
algorithm for network routers and a tagging algorithm for 
profile meters at the edge of the network for bulk-data transfers. 
We present simulation results to illustrate the effectiveness of 
the combined algorithms in controlling transmission control 
protocol (TCP) traffic to achieve certain targeted sending rates. 

Znriex Terms- Internet protocol, packet networks, quality of 
service, rate control, TCP. 

I. INTRODUCTION 

T HIS PAPER describes a new framework-the “allocated- 
capacity” framework-for providing allocated-capacity 

service in the Internet. The goal of the mechanism is to allocate 
the bandwidth of the Internet to different users in a controlled 
way during periods of congestion. The mechanism applies 
equally to traditional applications based on transmission con- 

trol protocol (TCP), such as file transfer, database access, or 
Web servers, and new applications such as real-time video 
and audio. 

The current Internet assumes the “best-effort” service 
model. In this model the network allocates bandwidth among 
all of the instantaneous users as best it can and attempts to 
serve all of them without making any explicit commitment 
as to rate or any other service quality. When congestion 
occurs, the sources of traffic are expected to detect this and 
slow down, so that they achieve a collective sending rate 
equal to the capacity of the congestion point. In contrast, the 
mechanism offered by the “allocated-capacity” framework can 
provide users with predictable expectations of Internet service. 
In times of congestion all connections will slow down and 
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reduce their sending rates to the expected rates. Since different 
users have different allocations, the network offers different 
levels of best-effort service in times of congestion. 

The mechanism in the framework allows users and providers 
with a wide range of business and administrative goals to 
make capacity allocation decisions. In the public Internet, 
where commercial providers offer service for payment, the 
feedback to customers is most often monetary. Our framework 
allows the providers to charge different prices to users with 
different service requirements and, thus, fund the deployment 
of additional resources. In private networks like corporate or 
military networks, administrative measures are often used to 
allocate resources. Our framework provides a means to allocate 
different resources to different users. Regardless of top-level 
policy, the same mechanism can be deployed in the underlying 
infrastructure to allocate bandwidth. 

Additionally, the mechanism provides useful information to 
providers about provisioning requirements. With our mech- 
anism in place, service providers can more easily allocate 
specific levels of assured capacity to customers and can easily 
monitor their networks to detect when their customers’ needs 
are not being met. 

The rest of the paper is organized as follows. Section II 
explains the framework in detail. The framework is simple, 
scalable, and flexible to provide different kinds of service. 
We also describe two complementary ways of controlling the 
traffic: sender-based and receiver-based. Section III describes 
two algorithms: a preferential dropping algorithm, which we 
propose to be adopted in the center of the network, and a 
tagging algorithm tailored for bulk-data TCP traffic. As an 
example, we will use bulk-data TCP transfers with certain 
throughput expectations to demonstrate the concepts in the 
framework. Section IV presents results using the above algo- 
rithms in simulated environments for bulk-data transfers. The 
simulations show that the “allocated-capacity” framework is 
effective in providing different levels of best-effort service 
with high assurance over the existing Internet. The framework 
also provides a simple way of identifying nonresponsive users 
at aggregation points. Section V concludes our work. 

A. Related Work 

A number of approaches have been proposed for controlling 
usage and explicit allocation of resources among users in time 
of overload, both in the Internet and in other packet networks. 

MacKie-Mason and Varian proposed dynamic allocation of 

bandwidth at the packet granularity in their “smart-market” 
scheme [ 191. In this scheme each packet carries a bid-a price 

that the user is willing to pay for service. At each point of 
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congestion, all of the offered packets are ranked by price and 

a cutoff price is determined, based on current capacity, such 
that only those packets with a bid above the cutoff are serviced. 
The others are held in a queue, subjected to increased delay 
and risk of being dropped. There are a number of drawbacks 
to this scheme. One is that the linkage between the treatment 
of each individual packet and the overall transfer rate is not 
obvious. Also, the “smart market” operates only on a hop-by- 
hop basis, and it is not obvious how this can be translated 

into end-to-end performance. Finally, the computation needed 
for clearing the bids and accounting in each router is likely 

to be prohibitive. 
Gupta et al. [ 151 proposed priority scheduling for allocation 

of bandwidth among users. This scheme creates service classes 
of different priorities to serve users with different needs. 
Higher priority packets always depart the routers first. Thus, 
the effect of priority queueing is to build up a queue of 
lower priority packets, which will cause packets in this class 
to be preferentially dropped due to queue overflow. This 
scheme might be a useful building block for explicit service 
discrimination, but it does not have a mechanism for balancing 

the demands of the various classes. 
Weighted fair queueing [3], [6] creates different queues 

for different connections and ensures that each connection 
will receive some share of the bandwidth. This mechanism 
allocates bandwidth among all connections within a router, 
but does not by itself address how many connections each 
user has and how they interact. In addition, it is not clear that 
this scheme is scalable in the center of the network where the 
routers have a large of amount traffic connections aggregated. 

Our approach is based on the idea of tagging packets as 
in or out and treating them differently based on the tags. 
This idea of tagging packets is not a new one. For example, 
researchers at IBM [l] proposed tagging as part of a flow 
control scheme. Frame relay has the concept of in/out packets 
as does asynchronous transfer mode (ATM)-the cell loss 
preference (CLP) bit. Those ideas were proposed in the context 
of a specific reserved flow or virtual circuit from a source 
to a destination. In [5] the idea was applied to a packet- 
switched network where there is no implication that the 
allocated capacity for any user is reserved along a particular 
path. Profile meters tag packets based on contracted profiles 
between Internet service providers (ISP’s) and customers. The 
network preferentially drops out packets during periods of 
congestion. As a consequence, the ISP’s can offer different 
levels of service based on these profiles. Reference [4] also 
developed a receiver-based scheme for controlling traffic. 

Our framework incorporates the above tagging idea, and 
extends it in the following three aspects: 1) instantiates the 
framework by designing a set of tagging and dropping al- 
gorithms; 2) provides a simple way to identify and isolate 
nomesponsive connections; and 3) demonstrates the effective- 
ness of the framework with simulation results. 

in the router that favors traffic that is within those service al- 
location profiles. The core of the idea is very simple-monitor 
the traffic of each user as it enters the network and tag packets 
as either in or out of their service allocation profiles, then 
at each congested router, preferentially drop packets that are 
tagged as being out. 

Inside the network, at the routers, there is no separation 
of traffic from different users into different flows or queues. 
The packets of all users are aggregated into one queue, just as 
they are today. Different users can have very different profiles, 
which will result in different users having different quantities 
of in packets in the service queue. A router can treat these 
packets as a single commingled pool. This attribute of the 

scheme makes it very easy to implement, in contrast to a 
scheme like RSVP [21] or weighted fair queueing, in which 

the packets must be explicitly classified at each node. 
To implement this scheme, the routers must be augmented 

to implement a dropping scheme’ (Section III-A offers the 
specifics of a preferential dropping algorithm we developed). 
Additionally, a new function must be implemented to tag the 
traffic according to its service allocation profile. This algorithm 
can be implemented as part of an existing network compo- 
nent-host, access device, or router-or in a new component 
created for the purpose. Conceptually, we will refer to it as a 
distinct device called a “profile meter.” 

B. Location of Projle Meters in the Network 

Fig. 1 illustrates the “allocated-capacity” framework with a 
sender-based control. All of the routers (G) in the network 
have adopted a preferential dropping algorithm (D). In the 
simple sender-based scheme the function that checks whether 
traffic fits within a profile is implemented by tagging packets 
at the edge of the network, e.g., the profile meter (M2) is on 
the access link from Hl to ISPI. The complete story is more 
complex. A profile describes an expectation of service obtained 
by a customer from a provider. These relationships exist at 
many points in the network, ranging from individual users 
and their campus local area networks (LAN’s) to the peering 
relationships between global ISP’s. Any such boundary may 
be an appropriate place for a profile meter, e.g., M3-M6 in 

Fig. 1. 
Furthermore, the packet tagging associated with this service 

allocation profile will, in the general case, be performed by 
devices at both side of a boundary. One such device, located 
on the sourcing traffic side of a network boundary, is a “policy 
meter” (Ml, M3, and M5 in Fig. 1). This device chooses which 
packets to tag, based on some administrative policy. Another 
sort of device, the “checking meter,” sits on the arriving traffic 
side of a network boundary, checks the incoming traffic, and 
marks packets as out if the arriving traffic exceeds the assigned 
profile, e.g., M2, M4, and M6. In this generalized model a 

II. THE “ALLOCATED-CAPACITY” FRAMEWORK 
’ There are other schemes being proposed to create preferential treatments of 

packets, including a priority scheme in which packets tagged as in are put into 

A. Overview 
a separate queue from the out packets, or more elaborate versions. Separate 
queues for different types of packets will likely cause packet reordering, 

The general approach of this mechanism is to define a ser- 
resulting in performance degradation in TCP or jitter in real-time traffic. In 
this paper we only focus on using preferential dropping of packets and placing 

vice allocation profile for each user and to design a mechanism both in and out packets in the same queue. 



364 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 6, NO. 4, AUGUST 1998 

Fig. 1. The “allocated-capacity” framework (sender-based). Host 1 (Hl) has a sender-based profile and is sending traffic to host 2 (H2) (dotted line). 
The traffic traverses three ISP’s. The routers G in the figure are all augmented with preferential dropping algorithms D. There are profile meters M at 
each interface between a customer and an ISP, or between two ISP’s. Ml is a profile meter inside a host, M2 is on the access link from Hl to ISPl, 
and M3-M6 are profile meters on the boundaries of ISP’s. 

packet will travel through the network, passing a series of 

cascaded profile meters. 
The first meter that the traffic encounters should provide 

the highest degree of discrimination among the connections. 
As the traffic merges and aggregates with other traffic in the 
center of the network, the corresponding profile meters only 
need to look at large aggregates. A profile meter integrated 
into a host implementation of TCP and Internet protocol (IP), 
for example, can serve to regulate the relative use of the 
network by individual flows. In contrast, subsequent meters 
at ISP boundaries serve to verify that there is a large enough 
overall service contract in place at that point to carry all the 
traffic tagged as in at the interior points. 

C. A Spectrum of Services 

In designing this framework we are serving two potentially 

conflicting goals. First, we would like to implement a set 
of simple services which are useful and easy to understand 
and adopt; second, we do not want to embed the above 
services into the mechanisms so that the framework cannot 
adapt to new applications with new service requirements in 
the future. The decoupling of the service allocation profiles at 
the edge of the network from the differential dropping in the 
center of the network allows this flexibility. To oversimplify, 
the preferential dropping scheme adopted in routers in the 
center of the network will not change over time. Since the 
characteristics of a service is defined and captured by its 
corresponding profile meter, it is only necessary to create the 
profile meter at the edge of the network to adopt a new service. 

The services provided by this framework are diverse. As a 
simple example, it could be the equivalent of a dedicated link 
of some specified bandwidth from a source to a destination. 
Such a model is easy for users to understand. A more elaborate 
model can be an aggregated commitment to a range of 
destinations, or anywhere within an ISP, sometimes called 
a private- virtual network. A virtual network is by nature 
more difficult to offer with high assurance since offering 
commitments to “anywhere within a virtual network” implies 
that the ISP has provisioned its resources adequately to support 
all users sending in traffic simultaneously to any destination. 

Not all Internet traffic is continuous in its requirement for 
bandwidth. In fact, most Internet traffic is very bursty. It may 
thus be that a “virtual-link” service model is not what users 
really want. It is possible to support bursty traffic by changing 
the profile meter to implement this new sort of service. The 
key issue is to ensure, in the center of the network, that there is 
enough canacitv to carrv this burstv traffic and. thus. actuallv 

meet the commitments implied by the outstanding profiles. 
This requires a more sophisticated provisioning strategy than 
the simple “add ‘em up” needed for constant bit-rate virtual 
links. However, in the center of the existing Internet, especially 
at the backbone routers of major ISP’s, there is a sufficiently 
high degree of aggregation that the bursty nature of individual 
traffic flows is no longer visible. This suggests that providing 
bursty service allocation profiles to individual users will not 
create a substantial provisioning issue in the center of the 
network, while possibly adding significant value to the service 
as perceived by the users. 

A more sophisticated service allocation profile would be one 
that attempts to provide a specified and predictable through- 
put to a TCP stream. This is more complex than a profile 
that emulates a fixed capacity link, since TCP hunts for 

the correct operating rate by increasing and decreasing its 
window size, which causes rate fluctuations to which the 
profile must conform. The service allocation profile is easy 
for a user to test by simply running a TCP-based application 
and observing the throughput. This is an example of a “higher 
level” profile, because it is less closely related to some existing 
network components and more closely related to the users’ 
actual demands. In Section III we will describe algorithms to 

implement such a profile. 
In summary, three things must be considered when describ- 

ing 
. 

. 

. 

a service allocation profile. 

Traffic specijcations: What exactly is provided to the 
customer (for example, 5 Mb/s average throughput)? 
Geographic scope: To where is this service provided 
(examples might be a specific destination, a group of 
destinations, all nodes on the local provider, or “every- 
where”)? 
Probability of assurance: With what level of assurance 
is the service provided (or, alternately, what level of 
performance uncertainty can the user tolerate)? 

These things are coupled; it is much easier to provide “a 
guaranteed 1 Mb/s” to a specific destination than to anywhere 
in the Internet. 

D. Provisioning with Statistical Assurance 

The statistical multiplexing nature of the Internet makes 
efficient use of bandwidth and supports an increasing number 
of users and new applications. However, it does lead to some 
uncertainty as to how much of the bandwidth is available at 
any instant. Our approach to allocating traffic is to follow this 
nhilosoohv to the degree that the user can tolerate the uncer- 
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tainty. In other words, we believe that a capacity allocation 
scheme should provide a range of service assurance. At one 
extreme, the user may demand an absolute service assurance, 
even in the face of some network failures. Less demanding 
users may wish to purchase a service allocation profile that 
is “usually available” but may still fail with low probability. 
The presumption is that a higher assurance service will cost 
substantially more to implement. 

We have called these statistically provisioned service alloca- 
tion profiles “expected capacity” profiles. This term was picked 
to suggest that the profiles do not describe a strict guarantee 
but, rather, an expectation that the user can have about the 
service he will receive during times of congestion. This sort 
of service will somewhat resemble the Internet of today in 
that users have some expectation of what network performance 
that they will receive; the key change is that our mechanism 
permits different users to have different expectations. 

For traffic that requires a higher level of commitment, more 
explicit actions must be taken. Those actions can be either 
static, e.g., making a long-term commitment on physical links 
to a user, or dynamic, e.g., an RSVP-like protocol to set up 
temporary reservations. It should be noted that traffic requiring 
this higher level of assurance can still be aggregated with 
other similar traffic. It is not necessary to separate out each 
individual flow to ensure that it receives its promised service. 
For example, there could be two queues in the router, one for 
traffic that has received a statistical assurance and one for this 
higher, or “guaranteed,” assurance. Within each queue, in and 
out tags would be used to distinguish the subset of the traffic 
that is to receive the preferred treatment. 

Fundamentally, statistical assurance is a matter of provi- 
sioning. In our scenario an ISP can track the amount of traffic 
tagged as in crossing various links over time, and provide 
enough capacity to carry this subset of the traffic, even at times 
of congestion. This is how the Internet is managed today, but 
the addition of tags gives the ISP a better handle on how much 
of the traffic at any instant is “valued” traffic and how much is 

discretionary or opportunistic traffic for which a more relaxed 
attitude can be tolerated. 

E. Receiver-Controlled Scheme 

The tagging scheme described above implements a model in 
which the sender, by selecting one or another service allocation 
profile, determines what service will govern each traffic flow. 
However, in today’s Internet, the receiver of the traffic, not 

the sender, is often more the appropriate entity to make 
such decisions. We describe a mechanism that implements 

receiver control of service, which is similar in approach and 
complementary to the sender-controlled tagging scheme. 

The receiver-based scheme in the “allocated-capacity” 
framework is the dual of the sender-based scheme. It relies 
on a newly proposed change to TCP called the explicit 
congestion notification (ECN) bit [ll]. In ECN semantics, 
congested routers will turn on the ECN bit in a packet instead 

of dropping the packet. The TCP receiver copies the ECN 
bit into the acknowledgment (ACK) packet, and the sender 
TCP will gracefully slow down upon receiving an ack with 
the ECN bit on. 

In the receiver-based expected capacity scheme, routers will 
not be modified; they will turn x the ECN bit in a packet when 
there is congestion. A profile meter, installed at the receiver, 
can check whether a stream of received packets is inside of the 
profile. Each arriving packet will debit the receiver’s service 
allocation profile. If there is enough profile to cover all arriving 
packets, the meter will turn off the ECN bits in those packets 
which had encountered congestion since the receiver is entitled 
to receive at this rate. If the receiver’s profile is exceeded, 
packets with their ECN bits m will be left unchanged at the 
profile meter. If packets arrive at the TCP receiver with ECN 
bits still ok, it means that the receiver has not contracted for 
sufficient capacity to cover all of the packets that encountered 
congestion, and the sender will be notified to slow down. 

I) Difference Between Sender-Based Control and Re- 
ceiver-Based Control: There are a number of interesting 
asymmetries between the sender and the receiver versions 
of this tag and profile scheme, which arise from the fact 
that the data packets flow from the sender to the receiver. In 
the sender scheme the packet first passes through the meter, 
where it is tagged, and then through any point of congestion. 
In contrast, in the receiver-controlled scheme the packet first 
passes through any points of congestion, where it is tagged, 
and then through the receiver’s meter. The receiver scheme, 
since routers only set the ECN bit if congestion is actually 
detected, can convey to the end point dynamic information 
about the current congestion levels. In the sender scheme, 
in contrast, profile meters must tag the packets as in or out 
without knowing if congestion is actually present. Thus, we 
could construct a service, based on the receiver scheme, to 
bill the user for actual usage during congestion. 

On the other hand, the receiver scheme is more indirect in its 
ability to respond to congestion. Since in the sender scheme a 
packet carries the explicit assertion of whether it is in or out of 
profile, the treatment of the packet is evident when it reaches 
a point of congestion. In the receiver scheme the data packet 
itself carries no such profile indication, so, at the point of 

congestion, the router must set the ECN bit, and still attempts 
to forward the packet, trusting that the sender will correctly 
adjust its transmission rate. Of course, if the profile meter at 
the receiver’s side employs a dropping algorithm, which will 

drop any packets that has exceeded the profile, the sender will 
slow down if it is a properly behaved TCP. 

Another difference between the two schemes is that in the 
sender scheme, the sending application can set the in/out bit 

selectively to control which packets are favored during the 
congestion. In the receiver scheme all packets sent to the 
receiver pass through and debit the profile meter before the 
receiver host gets them. Thus, in order for the receiver host to 
distinguish those packets that should receive preferred service, 
it would be necessary for it to install some sort of packet filter 
in the profile meter. 

2) Combining Sender-Based and Receiver-Based Schemes: 
The sender-based scheme can be combined with the receiver- 
based scheme [4]. One extra bit in the packet header will 
indicate whether this packet is a sender-pay packet or a 
receiver-pay packet. The receiver-pay scheme is the dual of 
the sender-pay scheme; for example, in the receiver-pay case 
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: sender-based 

Fig. 2. Simplified “allocated-capacity” framework. The simplified framework to illustrate the different levels of service provided for bulk-data TCP 
transfers. Both sender-based and receiver-based are shown. The darkly shaded boxes, profile meter M, and dropper D are for sender-based control. The 
lightly-shaded boxes, tagger T in the router and profile meter M at the receiver side, are for receiver-based control. G are all the routers in ISPI. 
There are no cascaded-profile meters. 

the routers turn on the ECN bit of a packet whenever such 
a packet would have been dropped had it been an out packet 
in the sender-pay case. For sender-pay packets, the routers 
always know which packets can be preferentially dropped by 
looking at the in/out bit, whereas for the receiver-pay packets, 
the routers only mark the packets and rely on the end hosts to 
back off. Therefore, there could potentially be theft-of-service 
by malicious users in the receiver-pay scheme. In a related 
work [2] addresses the robustness and security issues of a 
framework in which the two schemes can be combined. 

III. “ALLOCATED CAPACITY” FOR BULK-DATA TRANSFERS 

It is important to realize that the dropping algorithm in the 
routers, once adopted, is unlikely to change again over time; 
however, the service allocation profiles and corresponding pro- 
file meters will evolve as users have more sophisticated needs 
for new applications. Therefore, we need to find a dropping 
algorithm that will offer enough generality to cooperate with 
many types of profile meters. In this section we propose a 
preferential dropping algorithm to create discrimination in the 
center of the network. Additionally, we present a tagging 
algorithm tailored for bulk-data TCP transfers. For the sake 
of simplicity, we assume a simplified network with only one 
ISP between any two connecting hosts, as illustrated in Fig. 2. 
There is no cascading of profile meters. The service allocation 
profiles that we use are easy for the users to understand-they 
can provide a specific average throughput to anywhere within 
this network, with round trip times (RTT’s) ranging from 
20 to 100 ms (which is roughly comparable to metropolitan 
connections and cross-US connections, respectively). We will 
call the expected throughput the target rate, or RT. Different 
levels of service refer to the different target rates specified in 
service allocation profiles. The profile meters are on the access 
link from the host to its immediate ISP. The network is well 
provisioned since the sum of all service allocation profiles sold 
to customers does not exceed the link speed. We first concern 
ourselves with the kind of assurance different TCP connec- 
tions can achieve using the combined tagging and dropping 

algorithms. We then explore both sender-based and receiver- 
based schemes, and, finally, we study the results when traffic 
from a nonresponsive source persistently congests the router. 

A. TCP Rate Adjustment in the Current Internet 

In today’s Internet the end-host transport-layer TCP has 
congestion control and avoidance mechanisms which adjust 
TCP’s sending rate in response to congestion. Additionally, 

the router queue management algorithm drops packets as a 
mechanism for congestion feedback. We take advantage of 

both mechanisms to adjust TCP’s sending rate. We will discuss 

them in turn. 

The mechanisms used by TCP to deal with congestion are 

based on [ 181. TCP has two modes of dealing with congestion. 
The first mode, “fast recovery,” is triggered by the loss of 

very few packets, typically one. In this mode the TCP cuts 

its sending window size in half and, following a successful 
retransmission, increases its window size by one packet each 

RTT. Since the achieved transmission rate for any window 

size is roughly proportional to that window size, cutting the 
window size in half has the effect of reducing the achieved 

sending rate by up to half. The second mode is called “slow 

start,” and typically occurs when the retransmission timer goes 

off. In the slow-start mode TCP first reduces its window 

size to one, and then opens its window exponentially until 
the window reaches its slow-start threshold, or ssthresh, after 

which TCP opens up its window linearly. ssthresh reflects 

what TCP perceives to be the optimal operating point and 
is cut in half each time TCP detects a packet loss. In the 

current implementations of TCP, when many packet losses 

occur within one RTT, TCP cannot use fast recovery to recover 
packets and has to rely on the retransmission timer. When 

the retransmission timer goes off, TCP enters the slow-start 

mode. This has a more drastic effect on the TCP performance. 

First, the retransmission timer is often crude, measured in 

a granularity as coarse as 500 ms, and TCP does not send 
data during this period. Second, in slow start the sending 

TCP sets its window size to one packet when it starts again, 

also with a much reduced ssthresh. This essentially reduces 

the sending rate to zero. Therefore, the rate adjustments 
currently implemented by TCP are both imprecise and, on 

occasion, drastic. Given this, there is a concern that TCP’s rate 
adjustment mechanism cannot be used with enough precision 

to achieve a specific overall throughput, especially if slow 

start is triggered. 

In the current Internet, routers deal with congestion by 

dropping packets. Each time a packet is dropped, it causes a 
rate adjustment in one of the sending TCP’s. Between drops, 

all the TCP’s with data to send will increase their rate in an 

attempt to fill the network links fully. So infrequent packet 
drops, which might seem to be preferred mode of operation, 

actually provide fewer opportunities to adjust the rates among 

the various senders. As long as the packet drops trigger only 

the fast-recovery behavior, rather than the slow-start behavior, I 
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Fig. 3. (a) RED and (b) RIO algorithms (figures not drawn to scale). 

TCP stays in a phase with quantifiable rate adjustments and 
is much more controllable. 

B. Differential Dropping in the Routers: RIO 

sending rate. Therefore, the dropping probability is a fraction 

of p,,, and is usually small. When the average queue size is 
above maxth, the router drops every arriving packet, hoping 

to maintain a short queue size. 

RIO stands for random early drop (RED) routers with 
in/out bit. RED routers [lo] keep the overall throughput high 
while maintaining a small average queue length, and tolerate 
transient congestion. When the average queue has exceeded a 
certain threshold, RED routers drop packets at random so that 
TCP connections back off at different times. This avoids the 
global synchronization effect of all connections and maintains 
high throughput in the routers. RIO retains all these attractive 
attributes. In addition, it discriminates against out packets in 
times of congestion. At a high level, RIO uses twin RED 
algorithms for dropping packets, one for ins and one for 

outs. By choosing the parameters for respective algorithms 
differently, RIO is able to preferentially drop out packets. We 
will briefly describe the RED algorithm before presenting RIO. 

2) Twin Algorithms in RIO: RIO uses the same mechanism 

as in RED but is configured with two sets of parameters, one 
for in packets and one for out packets. Upon each packet 

arrival at the router, the router checks whether the packet 
is tagged as in or out. If it is an in packet, the router 
calculates avgin, the average queue for the in packets; if it 

is an out packet, the router calculates avg.total, the average 

total queue size for all (both in and out) arriving packets. 
The probability of dropping an in packet depends on avgin, 

and the probability of dropping an out packet depends on 
avg-total. 

1) RED Algorithm: An RED router operates as follows. It 
computes the average queue size and when the average queue 
size exceeds a certain threshold, it drops each arriving packet 
with a certain probability, where the exact probability is a 
function of the average queue size. The average queue size 
is calculated using a low-pass filter from instantaneous queue 
size, which allows transient bursts in the router. Persistent 
congestion in the router is reflected by a high average queue 
size and a high dropping probability. The resulting high 
dropping probability will discard packets early and, thus, 
detect and control congestion. 

As illustrated in Fig. 3, there are three parameters for 
each of the twin algorithms. The three parameters min -in, 

max -in, and P,,,ax _in define the normal operation [0, min in), 
congestion avoidance [min _in, max -in), and congestion con- 

trol [max in, co) phases for in packets. Similarly, min -out, 
max -out, and P,,, _out defines the corresponding phases for 
out packets. 

A RED router is configured with the following parameters: 
minth, maxth, and P,,. It works as illustrated in the leftmost 
figure in Fig. 3-the z-axis is avg, the average queue size, 
which is calculated using a low-pass filter of instantaneous 
queue size upon each packet arrival. The y-axis is the proba- 
bility of dropping an arriving packet. There are three phases 
in RED, defined by the average queue size in the range of [0, 
m&h), [minth, ma&h), and [maxth, co), respectively. The 
three phases are normal operation, congestion avoidance, and 
congestion control, respectively. During the normal operation 

phase, when the average queue size is below minth, the router 
does not drop any packets. When the average queue size is 
between the two thresholds, the router is operating in the 
congestion avoidance phase, and each packet drop serves the 
purpose of notifying the end-host transport layer to reduce its 

The discrimination against out packets in RIO is created by 

carefully choosing the parameters (min -in, max -in, P,,, -in), 
and (min -out, max -out, Pmax_out). As illustrated in two 
right figures in Fig. 3, a RIO router is more aggressive in 

dropping out packets on three counts. First, it drops out packets 
much earlier than it drops in packets; this is done by choosing 

min -out smaller than min -in. Second, in the congestion 
avoidance phase it drops out packets with a higher probability 

by setting P,,, _out higher than Pmax_in. Third, it goes into 
congestion control phase for the out packets much earlier 

than for the in packets by choosing max _out much smaller 

than max in. In essence, RIO drops out packets first when it 
detects incipient congestion, and drops all out packets if the 

congestion persists. Only as a last resort, occurring when the 
router is flooded with in packets, it drops in packets in the hope 

of controlling congestion. In a well-provisioned network this 

should never happen. When a router is consistently operating 
in a congestion control phase by dropping in packets, this 
is a clear indication that the network is underprovisioned. 

Appendix A contains the pseudocode for RIO algorithm. 

The choice of using avg-total, the total average queue size 
to determine the probability of dropping an out packet, is 
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Initially: 

Win-length = a constant; 
Avg_rate 
Tfront 

= connection’s target rate, Ra 
= 0; 

Upon each packet arrival, TSW updates its state variables as follows: 

Bytes_in_TSW = Avg_rate * Win-length; 
New-bytes 
Avg_rate 

= Bytes_in_TSW +pkt_size; 

Tfront 
= New-bytes / (now - T&-mat + Win-length); 

= now; 

Whereas, now is the time of current packet arrival; andpkt_size is the packet size of the arriving packet. 

Fig. 4. TSW algorithm. 

subtle. Unlike in packets, which the network can properly 
provision for, the out packets represent opportunistic traffic, 
and there is no valid indication of what amount of out packets 
is proper. If we had used the average out packet queue to 
control the dropping of out packets, this would not cover 
the case where the total queue is growing due to arriving in 
packets. We could have used avgin, the average queue for the 
in packets, to see how much “free space” the routers have for 
out packets, i.e., drop fewer out packets when avg-in is small 
and drop more out packets when avgin is large. But this only 
works when the number of in packets in the queue is large, 
so the routers have good control on the number of out packets 
and total queue length. By using the avgtotal, total average 
queue size, routers can maintain short queue length and high 
throughput no matter what kind of traffic mix they have. It is 
conceivable that one could achieve a more responsive control 
of out packets by changing the dropping parameters to depend 
on both the average in queue size avgin and the average total 
queue size avg-total, but we have not explored this idea. 

C. Profile Meters for Bulk-Data Transfers: TSW Tagger 

The profile meter that we designed for bulk-data transfers 
is called the time-sliding window (TSW) tagger. The TSW 
tagger has two distinct parts-a rate estimator and a tagging 
algorithm. TSW refers to the rate estimator algorithm. TSW 
provides a smooth estimate of the TCP sending rate2 over a 
period of time. With the estimated rate avgrate, the tagging 
algorithm can tag packets as out packets once the traffic 
exceeds a certain threshold. 

A rate estimator is used to smooth out the burstiness of 
TCP traffic as well as to be sensitive to instantaneous sending 
rates. TSW estimates the sending rate upon each packet arrival 

and decays, or forgets, the past history over time.3 The design 
of TSW is also extremely simple. TSW maintains three state 
variables-Win-length, which is measured in units of time, 
Avg_rate, the rate estimate upon each packet arrival, and 
T-front, which is the time of last packet arrival. TSW is used 
to estimate the rate upon each packet arrival; so state variables 
Avg_rate and T-front are updated each time a packet arrives, 

‘The burstiness of TCP traffic is a well-known phenomenon. Articulated 
in [20], it is caused by the fact that TCP paces out packets using its window 
algorithm and possible “ACK compression” in two-way traffic. 

3Though a low-pass filter of instantaneous sending rate (packet size divided 
by interpacket arrival time) seems to be an obvious choice for the rate 
estimator, it suffers a flaw: it decays the sending rate over packet arrivals, not 
over time. Consequently, a fast TCP is decaying its past history faster than 
a slow TCP, and when TCP is not sending, the past history is not decayed. 
TSW is designed to avoid this. 

but Win-length is preconfigured when the profile meter is 
installed. 

The TSW rate estimator works as shown in Fig. 4. 
We do not include a proof of the decaying function embed- 

ded in TSW. Intuitively, TSW remembers Win-length worth 
of past history, and decays the estimated sending rate by a 
factor of e over Win-length period of time. 

In terms of tagging algorithm there are two different ap- 
proaches. Ideally, a profile meter can keep a TCP connection 
oscillating between 0.66 RT, the target rate, and 1.33 RT so 
that, on average, the connection can achieve RT. The first 
approach is that the meter could remember a relatively long 
past history-in the order of a TCP sawtooth from 0.66 to 1.33 
RT-and tag packets as out with P = (avgrate - RT)/RT, 
when the avg_rate exceeds RT. All packets are tagged as in 
when the avg_rate is below RT. The second approach is for 
the profile meter to remember a relatively short history-on 
the order of an RTT-and look for the peak of a TCP 
sawtooth when TCP exceeds 1.33 RT, at which point, the 

tagger starts tagging packets as out. When the profile meters 
are next to the host, where TCP sawtooths are quite visible, 
the second approach is more effective. On the other hand, the 
first approach is more general and can be applied not only to 
individual TCP connections but also to aggregated TCP traffic 
or other type of traffic. In our simulations we use the second 
approach. 

D. DifJiculties in Designing RIO-TSW 

Our service allocation profile “certain target throughput to 
anywhere (within ISP),” albeit simple, is in fact difficult to 
accomplish if the profile meters are on the access link from 
the hosts to their ISP’s. There are two reasons for this. First 
of all, with the TCP algorithm for opening up windows, there 
is a strong network bias in favor of connections with short 
RTT’s. In the fast-recovery phase TCP increases cwnd by 
one packet4 each RTT. Let T denote RTT. Each RTT, TCP 
increases its sending rate by l/r packets/s, or it increases its 
sending rate by l/(r)’ each second. For example, when a 

connection has an RTT five times that of another connection, 
the increase in sending rate for this connection is l/25 of the 
other connection. Therefore, when both connections receive 
drops simultaneously, it takes the long RTT connection much 
longer to recover to its sending rate before the drop than 
the short one. During this period of recovery, the short RTT 

4Real implementation of TC increases window measured in bytes, instead 
of packets; we use packets for simplicity in explanation. 
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connection has a higher average sending rate than the long 
RTT connection. This explains why a service allocation profile 
with specific source-destination pair is comparatively easier 
to implement because its RTT is known.5 As we discussed in 
Section III-A, the profile meters are on the access link from the 
host to the ISP, and do not know the RTT of TCP connections 
at the host. Therefore, the profile meter has to assume some 
fixed RTT value and use it for all possible RTT’s, as the 
host TCP is promised to send to “anywhere” with certain rate. 
Consequently, when the host is sending to a closer destination, 
it can usually achieve better throughput than the target rate RT, 
whereas it will fall slightly under expectations for longer RTT 
connections. Our goal is to explore what kind of assurance we 
can have for what range of RTT’s. In Section IV-B we will 
demonstrate this network bias against long RTT connections 
with simulations, and explain how the “allocated-capacity” 
framework can alleviate such a bias. 

The second challenge is to avoid TCP’s retransmission 
timeouts. As we have discussed earlier, the fast-recovery phase 
of TCP provides much more controllable and quantitative 
adjustments of rates than the slow-start phase following a 
retransmission timeout. In the current version of TCP, fast- 
recovery phase is maintained so long as TCP only suffers one 
or two packet drops within one RTT. Once a TCP connection 
is sending above its target rate RT, the profile meter starts to 

tag packets as out packets. If a cluster of packets are tagged 
as out, the likelihood of them getting dropped together is 
also high. This will drive TCP into a slow-start phase and 
create undesirable consequences. Our solution is to introduce 
a probabilistic function while tagging packets as out. The 
probabilistic function will space out packets that are tagged 
as out, reducing the probability of going into slow starts. 

Both of the above difficulties are consequences of the fact 
that the profile meter is separated from the host’s TCP and, 
hence, has no knowledge of RTT or any other internal state 
information of the TCP. If, instead, the profile meter could be 
integrated with the host’s TCP code, then we can precisely 
avoid the above difficulties6 When this is not feasible, our 
framework can provide better assurances by keeping the TCP’s 

strictly in the fast-recovery phase. For example, in the receiver- 
based scheme, there will be no packet drops. Instead of 
inferring from a packet drop that congestion had occurred, 
the sending TCP can receive explicit congestion notification, 
reduce its window size appropriately, and operate in the fast- 
recovery phase most of the time. A new version of TCP [TCP 
with selective ACK (TCP-SACK)] has similar properties and 
can work well in our framework. 

IV. SIMULATIONS RESULTS 

A. Simulation Setup 

We use the 7~s [17] network simulator from Lawrence 

Berkeley National Laboratory (LBNL) for our simulations. 

50f course, the actual R’M depends on the queueing delay caused by 
congestion during the transmission, but ISP’s usually have a crude estimate. 

6This profile meter, of course, should be augmented with a “checking” 
profile meter on the access link to make sure that the host isn’t cheating. 
Section IV-B explores this topic. 
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Fig. 5. Ten-connection case 

TABLE I 
COMPARISON OF RED AND RIO-TSW FOR TEN-CONNECTION SCENARIO. LINK 

BW = 33 Mb/s, PARAMETERS FOR RED (10, 30, 0.02), PARAMETERS FOR 
RIO (40, 70, 0.02) FOR ins AND (10, 30, 0.2) FOR outs, USED TCP-RENO 

Conn RTT RED routers with RIO- 
# (ms) (Mhps) RT (Mhps) TSW (Mbps) 

0 20 7.04873 1 2.27289 

1 I 20 1 6.22214 I5 1 5.7619 

2 40 2.83662 1 1.28011 

3 40 2.28316 5 5.26757 

4 50 2.62307 1 1.21957 

5 50 2.81556 5 5.18823 

6 70 1.61073 1 1.34831 
7 70 I .57837 5 4.12794 

8 100 164488 1 0.996326 

9 100 1.85132 15 1 4.12563 

total 30.51458 I 3 1.588476 

We use a simple topology with ten hosts connecting to their 
respective destinations via one common ISP. Fig. 5 shows the 
topology. The ten connections, each with a profile meter, share 
a common bottleneck of 33 Mb/s, whereas the total contracted 
profiles are 30 Mb/s. The connections have different RTT’s, 
ranging from 20 to 100 ms. They are grouped into five pairs. 
Each pair has a connection with target rate RT of 1 Mb/s, and 
another connection with RT of 5 Mb/s. We experiment with 
both sender-based and receiver-based schemes, with different 
versions of TCP, and with how to deal with nonresponsive 
flows. All TCP connections run for 20 s unless otherwise 
noted. Due to limited space, we abbreviate results as the 
average throughput achieved by the TCP receiver after TCP 
has reached stable state, and present them in tables. 

B. Comparison with TCP in Today’s Internet 
(Sender-Based, TCP-Reno) 

Table I compares the throughput of the ten connections 
in the current Internet environment and in the “allocated- 
capacity” framework. The RTT’s of ten connections, ranging 
from 20 to 100 ms, are listed in column 2. Column 3 lists the 
throughput that these ten TCP (TCP-Reno) connections can 
achieve in today’s Internet from a particular simulation run. 
The network bias against long RTT connections is evident. 
Graphs of TCP window oscillations (not shown) are usually 
drastic and unpredictable. As a result, the throughput that TCP- 
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Reno can achieve is usually unpredictable, e.g., connections 
2 and 3 have the same RTT but differ significantly in their 
throughput (24%). The last two columns list relevant infor- 
mation for the “allocated-capacity” framework: column 4 lists 
the target rates, or RT, for the ten connections, and column 5 
is the throughput achieved by the TCP after having adopted 
a profile meter. The total link throughputs in both cases are 
comparable: 30.51 versus 31.6 Mb/s, or 92.5 versus 96% link 
usage. 

In comparing the two cases we observe the following-all 
other things being equal, the network bandwidth in the current 
Internet is distributed according to the RTT’s of the connection 
and is strongly in favor of connections with short RTT’s. The 
throughput achieved by TCP is subject to circumstances of 
router congestion and can be very unpredictable, especially 
when slow-start phase is triggered. In contrast, the “allocated- 
capacity” framework can allocate network capacity according 
to the service allocation profiles for which the users have 

TABLE II 
RECEIVER-BASED, TCP-RENO WITH ECN SEMANTICS, BW = 33 Mb/s, 

RED ROUTER WITH PARAMETERS (15, 40, 0.02), EXCEPT IT DOES 
NOT DROP PACKETS, BUT ONLY SETS ECN BITS WHEN CONGESTED 

Conn RTT RED routers with RIO- 
# (ms) (Mhps) R, (Mhps) TSW (Mbps) 

0 20 6.18994 I 2.71758 

1 I 20 1 5.69154 I5 1 5.38844 

2 40 3.30375 1 1.65922 
3 40 4.06525 5 5.02699 

4 50 2.67894 1 1.3496 

5 50 3.19256 5 4.83 154 

contracted. For TCP’s with the same service allocation profile, 
e.g., connections 1 and 9, the disadvantage that long RTT 

To put in another way, if the profile is to “anywhere,” then 

connections have is still visible, but it has been significantly 
there is a certain range of “anywhere” that is feasible with 

mitigated (though not corrected). Most importantly, now the 
high assurance by our designed service allocation profile. 

system can provide quite different expected capacities to 
different connections with reasonable assurance. D. A Step into the Future: Working with TCP-SACK 

and Profile Meters in the Host 

C. Receiver-Based (TCP-Reno with ECN) 

In the same format, Table II lists the results from the 
receiver-based scheme. The configuration of the system is 
comparable to that of the sender-based scheme. The advantage 
that short RTT connections have in today’s network is pro- 
nounced in column 3. Results in column 5-the throughput 
achieved by the ten connections, respectively-lead us to 
similar conclusions that the “allocated-capacity” framework 
can allocate bandwidth according to the target rates RT in 
the times of congestion, and there is a strong discrimination 
against connections with small RT. The overall performance 
is slightly better than that of the sender-based scheme: 32.88 
versus 30.51 Mb/s (Table I). In the receiver-based scheme, 

since there are no packet drops, there are no retransmits, 
and TCP operates mostly in the fast-recovery phase, adjusting 
its windows gracefully. This attribute also makes the system 
more predictable in allocating bandwidth. In the receiver- 
based schemes the link usage is high: 32.88 Mb/s (99.6% 
link utilization) for using RED routers, and 32 Mb/s (97%) 
for using combined RIO routers and profile meters. The ECN 
scheme provides an elegant way of controlling the sending 
rate of TCP. 

It is important to realize that in both sender-based and 
receiver-based schemes, network bias against long RTT con- 
nections is not totally eliminated because the profile meters 
are on the access path. The profile meters, not knowing the 
instantaneous RTT of TCP, have to use a presumed RTT 
to calculate its Winlength variable, discriminating against 
connections with longer RTT’s than the presumed value. 
Conversely, it gives an advantage to connections with shorter 
RTT’s than the presumed value. Such bias limits the chances 
of predictability for long RTT connections in our framework. 

TCP-SACK [13] has very different semantics in its ACK 
packets. The sending TCP has precise information on the 
received or lost packets and can make correct decisions 
about retransmissions and window adjustments. It can re- 
cover multiple packet loss in a window and remain in the 
fast-recovery phase. Similar to the receiver-based scheme, 

when the host is using TCP-SACK, the “allocated-capacity” 
framework can provide different levels of services with high 
assurance, since no unexpected slow starts can cause large 
variations in throughput. 

The limitation in our TSW profile meter is that it does 
not know the instantaneous RTT of the TCP connections and 
therefore has to presume one. This limitation can be eliminated 
if the profile meter is implemented in TCP itself, which has 

a good estimate of the instantaneous RTT. In this case an 
additional “checking” profile meter will have to be installed at 
the connecting ISP to ensure that the host is not cheating by 
sending more in packets than it is promised. The corresponding 
“checking meter” on the access link from the host to ISP 
can be designed simply. Inside the host the “policy meter,” 
knowing the RTT, can insure differential best-effort service to 
connections with a much longer range of RTT’s. 

Table III lists the results of simulation of the above two 
cases. The results are presented in one table to save space. 
The left half of the table shows the results of “allocated- 
capacity” framework versus using RED routers only when 
the host TCP has been upgraded to TCP-SACK. Though 
the achieved throughput is only slightly better than those 
in the TCP-Reno case, the predictability is much higher. In 
other words, the results with TCP-SACK are much more 
consistent and with small variation. The TCP window graphs 
in simulations show perfect sawtooth behaviors, and no slow 
starts (Appendix B includes two TCP window graphs for 
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TABLE III 
WFH TCP-SACK TO RECOVER MULTIPLE PACKET LOSSES. PARAMETERS FOR RED ARE (10, 30, 0.02) 
AND PAMMETERS FOR RIO ARE (40, 70, 0.02) AND (10, 30, 0.5). Bw = 33 Mb/s, USED TCP-SACK 

TCP-Reno and TCP-SACK, respectively). The right half of 
the table lists the results from using a “policy meter” inside 
the host, using the TCP’s estimate of RTT’s to change the 
Win-length variable dynamically. We deliberately make the 
range of RTT’s bigger to make our point: the RTT’s are from 

16 to 150 ms, approximating communications within a city 
and across continental U.S., respectively. TCP in the hosts 

(TCP-SACK) tag the outgoing packets by using the same TSW 
algorithm that we mentioned before. For comparison, column 
8 lists throughput of TCP-SACK for this range of RTT’s when 
the profile meters are outside the host, therefore not knowing 
the respective RTT’s. Results in column 10 are both better and 
more predictable, as we had expected. 

E. Dealing with Nonresponsive Connections 

Nonresponsive connections are those connections that do 
not have any congestion avoidance mechanisms and do not 
slow down when their packets are dropped at the routers. 
In the current Internet, in the presence of nonresponsive 
connections, TCP-in fact, any transport-layer protocol that 
implements congestion avoidance mechanisms-is at a dis- 
advantage. While TCP backs off upon detecting congestion, 
nonresponsive connections will get their packets through while 
continuing to cause congestion. The currently proposed ways 
of dealing with nonresponsive connections includes using a 
fair-queueing mechanism to isolate different connections from 
each other, and using some kind of “penalty box” to identify 
and isolate nonresponsive connections, as recently proposed 

by U41. 
The “allocated-capacity” framework provides simple mech- 

anisms to shield users as well as ISP’s from nonresponsive 
sources in two ways. First, when a user has a service allocation 

profile, the in packets he sends are far less likely to be 
dropped in times of congestion, which implicitly shields him 
from the out packets. Second, when a disproportional number 
of out packets being dropped are from the same source, 
the router can take that as an accurate indication that this 
source is nonresponsive. In addition, instead of examining 
the history of all dropped packets, as proposed in [14], to 

TABLE IV 
TEN-CONNECTION CASE WITH NONRESPONSIVE CONNECTION (CBR). 

BW = 33 Mb/s, CBR IS SENDING AT 6 Mb/s, RIO PARAMETERS: (40, 
70, 0.02) FOR ins AND (10, 30, OS) FOR mm. USED TCP-SACK 

identify nonresponsive connections, in the “allocated-capacity” 
framework, the routers only need to look at the history of 
out packet drops, in which nonresponsive connections are 
overrepresented. 

In simulation we use a constant-bit-rate (CBR) source to 
model nonresponsive sources. We add a CBR connection to the 

above scenario, with a sending rate of 6 Mb/s, or roughly 20% 
of the total bandwidth. Table IV lists the throughputs in both 
the current Internet and the “allocated-capacity” framework, 
with the hosts using TCP-SACK. 

In today’s Internet this nonresponsive connection will inflict 
consistent congestion in the router, causing all responsive TCP 
connections to back off. Column 3 illustrates this effect-the 
CBR gets almost all of its packets through at the expense of the 
TCP’s performance. Connections O-9 all suffer performance 
loss, compared to column 3 in Table III, where the CBR is 

absent. With the “allocated-capacity” framework, connections 
with service allocation profiles are protected from the CBR: 

the link bandwidth is allocated according to the contracted 
service allocation profile while packets from CBR are severely 
dropped. The CBR connection receives 2.61 Mb/s or 43.5% 
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of its 6-Mb/s sending rate in our framework, versus 5.85 or 
97% of its sending rate in today’s Internet. 

F. Extensive Simulations and Future Work 

We have done extensive simulations on both sender-based 
and receiver-based in one-way and two-way traffic. We have 
also simulated scenarios where there is a mix of bursty traffic 
and bulk-data transfer traffic, and cascading traffic profiles. 
The result of the simulations can be found in [8]. It should 
be noted that the case we presented-“average throughput 
to everywhere”-is a harder case than “average throughput 
for a source destination pair,” so that the “allocated-capacity” 
framework can provide for a simpler service allocation profile 
with high assurance. Our future work includes implementing 
and testing our algorithms in a real testbed. From simulations 
alone, we conclude that with the “allocated-capacity” frame- 
work, TCP’s, especially newer version of TCP’s, can achieve 
different throughput with high assurance. 

V. CONCLUSIONS 

Key to the success of the Internet is its high degree of traffic 
aggregation among a large number of users, each of whom 

has a very low duty cycle. Because of the very high degree 
of statistical sharing, the Internet makes no commitment about 
the capacity that any user will actually receive. It does not 
make separate capacity commitments to each user. 

We conclude that while the mechanisms in the Internet 
seem to work today, a valuable service enhancement would 
be a means to distinguish and separately serve users with very 
different transfer objects, so that each could be better satisfied. 
This paper suggests that instead of allocating capacity to 
users by explicit reservations, we should take a much simpler 
step-using service allocation profiles to separate demands 
into those within the profiles (ins) and those outside the 
profiles (outs), and dealing with the delivery of in packets 
as a matter of provisioning. We argue that the users not 
only want differential services but also higher predictability 
than what the current Internet can provide. The proposed 
“allocated-capacity” framework provides mechanisms for al- 
locating different levels of services with high predictability. 
Since the service allocation profiles represent how resources 
are allocated when they are in demand, they are a rational 

basis for cost allocation. With the current Internet facing the 
imminent “tragedy of the commons,” a basis for cost allocation 
can alleviate congestion, utilize the existing resources more 
efficiently, and fund further growth of Internet infrastructure. 

The mechanism proposed here, which is the discrimination 
between packets marked as in and out for congestion pushback 
at times of overload, represents an example of the separation of 
mechanism and policy. It is capable of implementing a wide 

range of policies for allocation of capacity among users. It 
allows providers to design widely different service and pricing 
models, without having to build these models into all of the 
packet switches and routers of the network. The mechanisms 
that must be agreed upon and implemented globally are the 
format of the control flags in packets and the differential 
treatments of out packets in the system. In contrast, the service 

For each packet arrival 
if it is an In packet 

calculate the average In queue size avg_in; 
calculate the average queue size avg_total; 

If it is an In packet 
ifmin_in < avg_in c max_in 

calculate probability Pin; 
with probability Pin, drop this packet; 

else if max_in c avg_in 
drop this packet. 

if this is an Out packet 
if min_out cavg_total < max_out 

calculate probability Pout; 
with probability Pout, drop this packet; 

else ifmax_out <avg_total 
drop this packet. 

Fig. 6. RIO algorithm. 
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Fig. 7. Win size. (a) Congestion window 9 (Reno_IOflows) and (b) 
congestion window 9 (Sack_IOflows). 

allocation profiles will change and adapt to needs of future 
applications and business models of ISP’s, and will only affect 

the edge of the network. This design thus pushes most of the 
complexity to the edge of the network, making it scalable 
and flexible. 
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APPENDIX A 

RIO ALGORITHM 

The RIO algorithm is shown in Fig. 6. 

APPENDIX B 
CONGESTION WINDOW OSCILLATIONS FOR TCP-RENO AND 

TCP-SACK IN “ALLOCATED-CAPACITY” FRAMEWORK 

Fig. 7(a) and (b) shows that the TCP congestion window 
cwnd changes over time for connection #9 (RTT = 100 
ms). The connection uses TCP-Reno in Fig. 7(a) and uses 
TCP-SACK in Fig. 7(b). TCP-SACK can recover multiple 
drops gracefully and keep the window oscillating in a perfect 
sawtooth fashion, whereas TCP-Reno’s window swings are 
more drastic. See Fig. 7. 
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